Answer:
y = 2 sin (x +
) has the same graph of y = 2 cos (x +
) ⇒ 3rd answer
Step-by-step explanation:
Let us revise the rules of the trigonometric compound angles
cos(x + y) = cos x cos y - sin x sin y
sin(x + y) = sin x cos y + cos x sin y
Let us solve the problem using the rules above
y = 2 cos (x +
)
∵ 2 cos (x +
) = 2[cos x cos
- sin x sin
]
∵ cos
=
and sin
=
- Substitute them in the right hand side
∴ 2 cos (x +
) = 2[
cos x -
sin x]
- Multiply the bracket in the right hand side by 2
∴ 2 cos (x +
) =
cos x -
sin x
∴ y =
cos x -
sin x
Now let us find the function which give the same right hand side of the function above
y = 2 sin (x +
)
∵ 2 sin (x +
) = 2[sin x cos
+ cos x sin
]
∵ sin
=
and cos
=
- Substitute them in the right hand side
∴ 2 sin (x +
) = 2[
sin x +
cos x]
- Multiply the bracket in the right hand side by 2
∴ 2 sin (x +
) =
sin x +
cos x
- Switch the two terms of the right hand side
∴ 2 sin (x +
) =
cos x -
sin x
∴ y =
cos x -
sin x
- The same with right hand side of the function above
∴ y = 2 sin (x +
) has the same graph of y = 2 cos (x +
)