Answer:
(-5x)^4
Step-by-step explanation:
All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is

Multiply both sides by <em>r</em> :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for
:

Then as gets arbitrarily large, the term
will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18
Answer:
The two numbers following 1,-2,3,-4,5... are -6 and 7.
Step-by-step explanation:
index: 1 2 3 4 5 ....
value: 1 -2 3 -4 5
Let the index be n. Then the first term is a(1), the secon is a(2), and so on.
a(2) = 2*(-1)^(2-1) = 2*(-1) = -2 (correct)
a(3) = 3*(-1)^(3-1) = 3*(-1)^2 = 3 (correct)
a(4) = 4*(-1)^(4-1) = 4*(-1)^3 = -4 (correct)
So the general formula for a(n) is: a(n)=n(-1)^(n-1)
Thus,
a(5) = 5(-1)^4 = 5
a(6) = 6(-1)^5 = -6
a(7) = 7(-1)^6 = 7
The "next two numbers in the pattern" are -6 and 7. The first 7 numbers are
1,-2,3,-4,5, -6, 7
B and D are equivalent.
because of the domain and range
1/x has same Domin and range as that of in D