Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
now you can yourself know to which part of electromagnetic spectrum the photon belongs....
not fitting sharply in green
Answer:
Explanation:
radius of hoop and the radius of disk is same = R
Let the mass of hoop is M and the mass of disk is M'.
As they reach the bottom of teh surface in same time so they travel equal distance thus, they have same acceleration.
The acceleration is given by

As the acceleration is same so that the moment of inertia is also same.
Moment of inertia of disk = moment of inertia of hoop
1/2 x mass of disk x R² = mass of hoop x R²
So, mass of disk = 2 x mass of hoop
Option (c) is correct.
(I assume that the 4 directions north-south-east-west are meant with respect to the wire seen from the top.)
We can use the right-hand rule to understand the direction of the magnetic field generated by the wire. The thumb follows the direction of the current in the wire (upward), while the other fingers give the direction of the field in every point around the wire. Seen from the top, the field has an anti-clockwise direction. Therefore, if we take a point at east with respect to the wire, in this point the field has direction south.