For a:v = d / Δt
110 = 0.66 / Δt
Δt = 0.66 / 110
Δt = 0.006 s
the period is:
T = 2Δt
T = 2*0.006
T = 0.012 s
the frequency is the inverse of the period. so: f = 1 / T
f = 83.3333333 Hz (about; Hz = 1/s)
b. T = 2π√(m/k)
being the mass m = 200g = 0.2 kg = 2*10^-1 kg, π = 3.14 (about) and T = 0.012, k is equal to:
0.012 = 6.28√(2*10^-1 / k)
0.012 / 6.28 = √(2*10^-1 / k)
0.00191082803 = √(2*10^-1 / k)
2*10^-1/ k = 0.000003
2*10^-1 / k = 3*10^-6
k = 2*10^-1 / 3*10^-6
k = 6.67*10^-5
now using hooke's law:
F = -kx
F = - 6.67*10^-5* 3.3*10^-1
F = -2.20x10^-5m
F = -0.22 *10^4 N
Answer:
Angle of Refraction = 28.9 degrees
Explanation:
<u><em>We'll use Snell's law for this. It's mathematical form is:</em></u>
=> 
Where 
=>
and
are the refractive indexes of the air and water respectively.
<u><em>Solution:</em></u>
=> 1 * sin (40) = 1.33 * sin(
)
=> sin
= 
=> sin
= 0.4821
=>
= 28.9 degrees
Answer: C
X = Displacement of the spring
Hooke's law: It states that the applied force F is proportional to the displacement of spring .
F ∝ x
Where, x = displacement of spring in meters
F = force, measured in Newtons
In another words The force F is equal to the constant K times the disparagement.
F = k.x
Where k is constant and it depends on elastic material.
Spring has restorative force.
If the spring moves in opposite direction then,
F = - k.x
A negative sign indicates that the spring resists and force is to the left. The compression of the spring is greater than the restoring force.
Example: A mass 'm' stretches a spring at a displacement x.
acceleration = change in velocity /change in time
convert 40km to meter then divide it with 5