Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.
How many seconds did the wildebeest run??
Answer:
Power, P = 924.15 watts
Explanation:
Given that,
Length of the ramp, l = 12 m
Mass of the person, m = 55.8 kg
Angle between the inclined plane and the horizontal, 
Time, t = 3 s
Let h is the height of the hill from the horizontal,


h = 5.07 m
Let P is the power output necessary for a person to run up long hill side as :



P = 924.15 watts
So, the minimum average power output necessary for a person to run up is 924.15 watts. Hence, this is the required solution.