1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
3 years ago
9

Find the midpoint of the line segment with the given endpoints. (14, -6), (13, 14)​

Mathematics
2 answers:
Cloud [144]3 years ago
3 0

Answer:

Step-by-step explanation:

23

Flura [38]3 years ago
3 0

Answer:

(\frac{27}{2}, 4 )

Step-by-step explanation:

Use the midpoint formula

midpoint = [\frac{1}{2}(x₁ + x₂), \frac{1}{2}(y₁ + y₂ ) ]

with (x₁, y₁ ) = (14, - 6) and (x₂, y₂ ) = (13, 14), hence

[\frac{1}{2}(14 + 13), \frac{1}{2}(- 6 + 14) ]

= (\frac{27}{2}, 4)

You might be interested in
How do you find the area of a figure
Nostrana [21]

Answer:

Any figure?

Step-by-step explanation:

3 0
3 years ago
Need answer 25 and answer 27
UNO [17]

\\ \bull\tt\dashrightarrow \dfrac{-3}{8}x-20+2x>6

\\ \bull\tt\dashrightarrow \dfrac{-3}{8}x+2x=6+20=26

\\ \bull\tt\dashrightarrow \dfrac{-3+16}{8}x=26

\\ \bull\tt\dashrightarrow \dfrac{13}{8}x=26

\\ \bull\tt\dashrightarrow x=26\times \dfrac{8}{13}

\\ \bull\tt\dashrightarrow x=8(2)=16

#27

\\ \bull\tt\dashrightarrow 0.5x-4-2x\leqslant 2

\\ \bull\tt\dashrightarrow 0.5x-2x\leqslant=2+4=6

\\ \bull\tt\dashrightarrow -1.5x\leqslant 6

\\ \bull\tt\dashrightarrow x\leqslant\dfrac{6}{-1.5}

\\ \bull\tt\dashrightarrow x\leqslant 4

8 0
3 years ago
What is Limit of StartFraction StartRoot x + 1 EndRoot minus 2 Over x minus 3 EndFraction as x approaches 3?
scoray [572]

Answer:

<u />\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify given limit</em>.

\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}

<u>Step 2: Find Limit</u>

Let's start out by <em>directly</em> evaluating the limit:

  1. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}
  2. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:

  1. [Limit] Apply Limit Rule [L' Hopital's Rule]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}
  2. [Limit] Differentiate [Derivative Rules and Properties]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}
  3. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}
  4. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}

∴ we have <em>evaluated</em> the given limit.

___

Learn more about limits: brainly.com/question/27807253

Learn more about Calculus: brainly.com/question/27805589

___

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

3 0
2 years ago
Please solve 3x≤−5/4
frosja888 [35]
I think it is x ≤ -5/12
6 0
3 years ago
There are 3,848 students and staff at happy town high school. if the principal friendly and 15 teachers are infected by a zombie
Ostrovityanka [42]

Answer:

no

Step-by-step explanation:

at firth hr - 15×2=

2 nd hr - 60×2

and so on,it takes more than 8 hr

5 0
3 years ago
Other questions:
  • -2.25=4+y/5<br><br><br> Please help me answer this ASAP!!! <br> please and thank you...
    10·2 answers
  • 2x + y = 5<br> 4x + 2y = 10
    12·1 answer
  • Use distributive property to create an equivalent expression to 7x+56
    9·1 answer
  • What are integers greater than -1 and less than 4?
    14·1 answer
  • Please give a simple summary of log functions.
    13·1 answer
  • Please answer ASAP! A function graphed f(x) is graphed on the coordinate plane. What is the function rule in slope-intercept for
    11·1 answer
  • Darryl enlarged the size of a rectangle to a
    13·1 answer
  • Find the value of d.<br> 1/2d - 5 -1/4d = 10
    7·1 answer
  • The San Francisco Giants won 39 more games than the St. Louis
    9·1 answer
  • Can someone help me with this question
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!