Answer:
The enthalpy of vaporization of water at 273 K and 1 bar = 44.9 KJ/mol
Explanation:
Enthalpy of vaporization of water at 273 K, ΔHvap(T₂) is given as;
ΔHvap(T₂) = ΔHvap(T₁) + ΔCp * (T₂ - T₁)
where ΔCp = molar heat capacity of gas - molar heat capacity of liquid
Therefore, ΔCp = (33.6 - 75.3) = -41.70 J/(mol K) = 0.0417 kJ/(molK)
substituting ΔCp = 0.0417 kJ/(mol K) in the initial formula
;
ΔHvap(T) = ΔHvap(T1) + ΔCp * (T₂ - T₁)
ΔHvap(T₂)= 40.7 kJ/mol + {-0.0417 kJ/(mol K) * (272 - 373 K)}
ΔHvap(T₂) = 44.9 kJ/mol
Therefore, enthalpy of vaporization of water at 273 K and 1 bar = 44.9kJ/mol
.86km is the correct answer
The answer is C Nuclear Regulatory Commission
Answer:
4
Explanation:
Protein synthesis involves two major steps:
- <em>Transcription of the DNA to mRNA (a form of RNA)</em>
- <em>Translation of the mRNA molecule into a protein.</em>
<em></em>
Transcription involves the formation of a nucleotide sequence complementary to the DNA molecule, with the pairing of a different base, Uracil, with Guanine instead of the usual Thymine base. This occurs in the nucleus of the cell, and the resulting molecule is known as the mRNA.
This mRNA is transported into the cytoplasm through the nuclear pore for the next step, translation. This is primarily accomplished by ribosomes and tRNA molecules which are present in the cytoplasm of the cell. The result of this step is the generation of a protein molecule.
<h3>Hope this helps</h3>