Hey
Calculate the temperature change that occurs when 254 cal of heat are added to 24 g of water
answer: 800
Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer:
d. inversely proportional to the volume of its container.
Explanation:
Boyle's law states that at constant temperature and number of moles, the pressure of the gas is inversely proportional to the volume of the gas.
Thus, P ∝ T
P is the pressure
T is the temperature
For two gases at same temperature, the law can be written as:-

<u>Thus, according to the question, the answer is:- d. inversely proportional to the volume of its container.</u>
Answer:
Thermal energy
Explanation:
When gasoline, coal, batteries and logs are all burn they transform chemical energy to thermal energy.
The chemical energy is the energy held between chemical chains and bonds within an atom.
- When they combust, they release thermal energy
- Chemical energy is a potential energy.
- The thermal energy is a kinetic energy
- It increase the average motion of the particles in the medium
- The breaking bond when produces heat which is a form of thermal energy.
This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more: