Answer:
A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model.A pH of 7 indicates a neutral solution like water. A pH less than 7 indicates an acidic solution and a pH greater than 7 indicates a basic solution. Ultimately, the pH value indicates how much H+ has dissociated from molecules within a solution. The lower the pH value, the higher concentration of H+ ions in the solution and the stronger the acid. Likewise, the higher the pH value, the lower the concentration of H+ ions in the solution and the weaker the acid.
Explanation:
A is Ea, which stands for activating energy. Energy is needed to get the reaction underway and Ea is the energy needed to “start” the reaction.
B is the temperature either released or absorbed.
The diagram shows that the reaction is exothermic based on the fact that the products energy is lower than the reactants. That is because energy (which is temperature in this case) is released during the process. If the reactants would have been lower than the products, the reaction would be endothermic.
Answer:
37 mmol of acetate need to add to this solution.
Explanation:
Acetic acid is an weak acid. According to Henderson-Hasselbalch equation for a buffer consist of weak acid (acetic acid) and its conjugate base (acetate)-
![pH=pK_{a}(acetic acid)+log[\frac{mmol of CH_{3}COO^{-}}{mmol of CH_{3}COOH }]](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28acetic%20acid%29%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7Bmmol%20of%20CH_%7B3%7DCOOH%20%7D%5D)
Here pH is 5.31,
(acetic acid) is 4.74 and number of mmol of acetic acid is 10 mmol.
Plug in all the values in the above equation:
![5.31=4.74+log[\frac{mmol of CH_{3}COO^{-}}{10}]](https://tex.z-dn.net/?f=5.31%3D4.74%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7B10%7D%5D)
or, mmol of
= 37
So 37 mmol of acetate need to add to this solution.
<em>A: When burning Sulfur, Sulfur Dioxide is released. Having more Oxygen available provides more reactive potential for the burning Sulfur, making it burn much more fiercely. In water, the Sulfur Dioxide forms Sulfurous acid. Added: 12 years ago.</em>
<em />
<em>Explanation:</em>
<h3><em /></h3>