Answer:
It's well Explained below.
Explanation:
First of Excess product of CaCO_3 would be produced due to the fact that there would not be enough CaCl_2 to react with Na_2•CO_3. The main purpose of having stoichiometric quantities is for us to know the correct amount or near the correct amount of each reactant in order to create a product that will be close to the theoretical amount and thus have a higher percent yield.
Answer:

Explanation:
Firstly, write the expression for the equilibrium constant of this reaction:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

From here, rearrange the equation to solve for K:

Now we know from the initial equation that:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Let's express the ratio of ADP to ATP:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D)
Substitute the expression for K:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D)
Now we may use the values given to solve:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D%20%3D%20%5BPi%5De%5E%7B%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%20%3D%201.0%20M%5Ccdot%20e%5E%7B%5Cfrac%7B-30%20kJ%2Fmol%7D%7B2.5%20kJ%2Fmol%7D%7D%20%3D%206.14%5Ccdot%2010%5E%7B-6%7D)
“Models are developed when a scientist’s creativity and insight are combined with data and observations about many similar scenarios”. Models are used for a lot of things in science. As we know everything has advantages and disadvantages, and the same applies to models. Models help us illustrate the concept and formulate hypothesis. When models are used, the scientists are able to notice patterns and develop and revise representation that become a useful model, which makes their scientific knowledge stronger and helps them understand more about the nature of science. Models are a simplified representation. One of the biggest advantages of the model is, that it allows you to have a look at things which are too small such as atoms or too big such as the solar system.
Although, having many benefits, models have quite a number of disadvantages. Models sometimes oversimplify the process therefore leading to a misunderstanding. As models are supposed to be a simplified representation, they will not be complex, which means they will lack detail. For Example “our particle model explains many things about matter, it is not comprehensive — for example, it cannot predict why certain materials have different electrical properties. We could add further refinements that are outside the scope of this course to enable it to do so, but it would make our model so complicated that it would no longer be useful to us”
Answer:
This means the the sign of q for the reaction was _NEGATIVE _____ and the reaction was _EXOTHERMIC_____.
Explanation:
In calorimetry, when heat is absorbed by the solution, the q-value of the solution will have a positive value. This means that the reaction will produce heat for the solution to absorb and thus the q-value for the reaction will be negative. This is an exothermic reaction.
Whereas, when heat is absorbed from the solution, the q-value for the solution will have a negative value. This means that the reaction will absorb heat from the solution and so the reaction is endothermic, and q value for the reaction is positive.
So, from the question, since the q-value of water is positive, it means that heat is absorbed by the solution and the reaction will produce a negative value of q and it's an exothermic reaction because the reaction produces heat for the solution.