Answer:
B) substitution
Explanation:
2,3 dichloropentane is a hydrocarbon that contains two chlorine atoms in its chain. It has a chemical formula:
. In the compound, two hydrogen atoms has been substituted by two chlorine atoms.
A substitution reaction is a process by which an atom of a compound is being replaced by another atom to form a new compound due to a chemical reaction. This is one of the general properties of alkanes.
low melting point means that a low amount of heat is required to melt said substance.
<span>The state of the helium in its natural form is gaseous and is a chemical element of colorless aspect and belongs to the group of noble gases. The atomic number of helium is 2. The chemical symbol of helium is He. For the following we focus on those elements and relate it with similar chemical properties. Then we find that; Neon, Hydrogen, Boron and Carbon are related to helium, either by proximity in their atomic number or period or by their group.</span>
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.