Answer:
See below.
Step-by-step explanation:
a.
The first figure has 1 square. The second figure has a column of 2 squares added to the left. The third figure has a column of 3 squares added to the left. Each new figure has a column of squares added to the left containing the same number of squares as the number of the figure.
b.
Figure 10 has 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 squares.
c.
The formula for adding n positive integers starting at 1 is:
1 + 2 + 3 + ... + n = n(n + 1)/2
For figure 55, n = 55.
n(n + 1)/2 = 55(56)/2 = 1540
d.
Let's use the formula set equal to 190 and solve for n. If n is an integer, then we can.
n(n + 1)/2 = 190
n(n + 1) = 380
We know that 380 = 19 * 20, so n = 19.
Answer: yes
e.
Use the formula above,
S = n(n + 1)/2, where S is the sum.
f.
n(n + 1) = 1478
38 * 39 = 1482
37 * 38 = 1406
The aswer is A hop it helps
D, because there are several students that are in your school. There would be many different answers.
Answer:
Step-by-step explanation:
The sum of two matrices is the sum of corresponding terms.
![\left[\begin{array}{ccc}3&1&0\\-1&2&4\\9&7&-2\end{array}\right] +\left[\begin{array}{ccc}5&2&4\\1&12&3\\11&3&-2\end{array}\right] =\left[\begin{array}{ccc}8&3&4\\0&14&7\\20&10&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%260%5C%5C-1%262%264%5C%5C9%267%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%262%264%5C%5C1%2612%263%5C%5C11%263%26-2%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%263%264%5C%5C0%2614%267%5C%5C20%2610%26-4%5Cend%7Barray%7D%5Cright%5D)