Explanation :
Dispersion forces are also known as London dispersion forces. It is the weakest force. Also, it is the part of the Van der Waals forces.
(1) This force is exhibited by all atoms and molecules.
(2) These forces are the result of the fluctuations in the electron distribution within molecules or atoms. Due to these fluctuations, the electric field is created. The magnitude of this force is explained in terms of Hamaker constant 'A'.
(3) Dispersion forces result from the formation of instantaneous dipoles in a molecule or atom. When electrons are more concentrated in a place, instantaneous dipoles formed.
(4) Dispersion force magnitude depends on the amount of surface area available for interactions. If the area increases, the size of the atom also increase. As a result, stronger dispersion forces.
So, the false statement is "Dispersion forces always have a greater magnitude in molecules with a greater molar mass".
Answer:
Acceleration = 4.8 m/s²
Explanation:
Given:
Change in velocity = 19 m/s
Change in time = 4 s
Find:
Acceleration
Computation:
Acceleration = Change in velocity / Change in time
Acceleration = 19/4
Acceleration = 4.8 m/s²
Positive acceleration
Answer:
D. 4000 km
Explanation:
f = Frequency of wave that is being transmitted = 76 Hz
= Wavelength of wave that is being transmitted
v = The velocity of electromagnetic waves through air = 
Velocity of a wave is given by

Hence, the approximate wavelength of the waves is 4000 km
Answer:

Explanation:
<u>Given Data:</u>
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
<u>Required:</u>
Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
t = 39.60 s
Explanation:
Let's take a careful look at this interesting exercise.
In the first case the two motors apply the force in the same direction
F = m a₀
a₀ = F / m
with this acceleration it takes t = 28s to travel a distance, starting from rest
x = v₀ t + ½ a t²
x = ½ a₀ t²
t² = 2x / a₀
28² = 2x /a₀ (1)
in a second case the two motors apply perpendicular forces
we can analyze this situation as two independent movements, one in each direction
in the direction of axis a, there is a motor so its force is F/2
the acceleration on this axis is
a = F/2m
a = a₀ / 2
so if we use the distance equation
x = v₀ t + ½ a t²
as part of rest v₀ = 0
x = ½ (a₀ / 2) t²
let's clear the time
t² = (2x / a₀) 2
we substitute the let of equation 1
t² = 28² 2
t = 28 √2
t = 39.60 s