Answer:
<em>The flux through the sphere will remain the same, and the magnitude of the electric field will increase by four times.</em>
Explanation:
The electric flux is the number of electric field, passing through a given area. It is proportional to the electric field strength and the area through which this field passes.
If the radius of the sphere is halved, the area of the sphere will reduce by square of the reduction, which will be four times. The electric field lines will become closer together, or technically increase by a fourth of its initial value. The resultant effect is that the electric flux will remain the same.
If originally,
Φ = EA cos∅
where Φ is the electric flux through the sphere
E is the electric field on the sphere
A is the area of the sphere.
If the area of the sphere is reduced to half, then,
the area reduces to A/4,
and the electric field increases to be 4E on the sphere.
The flux now becomes
Φ = 4E x A/4 cos∅
which reduces to
Φ = EA cos∅
which is the initial electric flux on the sphere.
Answer:
Tension at the bottom of the swing T = 52.794N
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
China, US, India, and Russia
Answer:
K = G Mm / 9R
Explanation:
Expression for escape velocity V_e =
Kinetic energy at the surface = 1/2 m V_e ²
= 1/2 x m x 2GM/R
GMm/R
Potential energy at the surface
= - GMm/R
Total energy = 0
At height 9R ( 8R from the surface )
potential energy
= - G Mm / 9R
Kinetic energy = K
Total energy will be zero according to law of conservation of mechanical energy
so
K - G Mm / 9R = 0
K = G Mm / 9R