Answer:
3.01 × 10²⁴ atoms S
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
5.00 mol S
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁴ atoms S
<u />
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁴ atoms S ≈ 3.01 × 10²⁴ atoms S
Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
Answer:
A and D are true , while B and F statements are false.
Explanation:
A) True. Since the standard gibbs free energy is
ΔG = ΔG⁰ + RT*ln Q
where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R
when the system reaches equilibrium ΔG=0 and Q=Keq
0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)
therefore the first equation also can be expressed as
ΔG = RT*ln (Q/Keq)
thus the standard gibbs free energy can be determined using Keq
B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions
C) False. From the equation presented
ΔG⁰ = (-RT*ln Keq)
ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1
for example, for a reversible reaction ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)
D) True. Standard conditions refer to
T= 298 K
pH= 7
P= 1 atm
C= 1 M for all reactants
Water = 55.6 M
Covalent compounds
All the best
Answer:
0.07 g/s.
Explanation:
From the question given above, the following data were obtained:
Mass lost = 9.85 g
Time taken = 2 min 30 s
Mean rate =?
Next, we shall convert 2 min 30 s to seconds (s). This can be obtained as follow:
1 min = 60 s
Thus,
2 min = 2 × 60 = 120 s
Therefore,
2 min 30 s = 120 s + 30 s = 150 s
Finally, we shall determine the mean rate of the reaction. This can be obtained as illustrated below:
Mass lost = 9.85 g
Time taken = 150 s
Mean rate =?
Mean rate = mass lost / time taken
Mean rate = 9.85 / 150
Mean rate = 0.07 g/s
Therefore, the mean rate of the reaction is 0.07 g/s