The complete question is as follows: Barium chloride (BaCl2) emits a green color when flame tested. What can be said about the wavelength of light it emits? Select all that apply.
A) The thermal energy is transferred to the outer electrons of the barium ions.
B) The electrons gain enough energy to excite them to a higher energy level.
C) The electrons drop back down to their ground state, gaining energy.
D) The electrons release energy emitting a wavelength of 500-560 nm, corresponding to a green light, when going back to their ground state.
Answer: The following can be said about the wavelength of light that Barium chloride emits:
- The thermal energy is transferred to the outer electrons of the barium ions.
-
The electrons gain enough energy to excite them to a higher energy level.
- The electrons release energy emitting a wavelength of 500-560 nm, corresponding to a green light, when going back to their ground state.
Explanation:
As barium chloride is emitting green color when flame tested. This means that thermal energy is being transferred to the outer electrons of barium ions.
A visible light is emitted by a substance when its electrons move from a region of higher energy level to lower energy level. This is because energy is given off by the electrons when they move in a lower region.
This is only possible when the electrons gain enough energy to excite them to a higher energy level.
Also, the electrons release energy emitting a wavelength of 500-560 nm, corresponding to a green light, when going back to their ground state.
Thus, we can conclude that following can be said about the wavelength of light that Barium chloride emits:
- The thermal energy is transferred to the outer electrons of the barium ions.
-
The electrons gain enough energy to excite them to a higher energy level.
- The electrons release energy emitting a wavelength of 500-560 nm, corresponding to a green light, when going back to their ground state.
Answer: it reacts with the alkali metals (M) to form a salt MX, where X is the halogen.
Explanation: Group 7A elements are halogen and they react with alkali metals like Sodium or potassium to form a salt like NaCl
<span>O2 travels slower than H2, Ne, N2, and CO. This is due to the fact that O2 has a heavier molecular weight than the others. O2 has a weight of 32 grams per mole. N2 and CO are the next highest with 28 grams per mole. Ne is 20 grams per mole, and H2 is 2 grams per mole.</span>