The concentration of the drug stock solution is 1.5*10^-9 M i.e. 1.5 * 10^-9 moles of the drug per Liter of the solution
Therefore, the number of moles present in 1 ml i.e. 1*10^-3 L of the solution would be = 1 *10^-3 L * 1.5 * 10^-9 moles/1 L = 1.5 * 10^-12 moles
1 mole of the drug will contain 6.023*10^23 drug molecules
Therefore, 1.5*10^-12 moles of the drug will correspond to :
1.5 * 10^-12 moles * 6.023*10^23 molecules/1 mole = 9.035 * 10^11 molecules
The number of cancer cells = 2.0 * 10^5
Hence the ratio = drug molecules/cancer cells
= 9.035 *10^11/2.0 *10^5
= 4.5 * 10^6
Each carbon atom is covalently bonded to four other carbon atoms. A lot of energy is needed to separate the atoms in diamond. This is because covalent bonds are strong, and diamond contains very many covalent bonds. This makes diamond's melting point and boiling point very high.
Answer:- 14.0 moles of hydrogen present in 2.00 moles of
.
Solution:- We have been given with 2.00 moles of
and asked to calculate the grams of hydrogen present in it. It's a two step conversion problem. In first step we convert the moles of the compound to moles of hydrogen as one mol of the compound contains 7 moles of hydrogen. In next step the moles are converted to grams on multiplying the moles by atomic mass of H. The calculations are shown as:

= 14.0 g H
So, there are 14.0 g of hydrogen in 2.00 moles of
.
Answer:
Periods have consecutive atomic number as they are in a row and groups are vertical meaning they are in a column and groups have similar properties