The LCD = 6x^2y^3 ( because LCD of 3 and 6 = 6, LCD of x^2 and x = x^2 and LCD of y and y^3 = y^3)
now divide 3x^2y into the LCD then multiply this by 5 to get the first term in the numerator and do similar process to get second term, so we get:-
5(2y^2) - 4(x)
------------------
6x^2y^3
= 2( 5y^2 - 2x)
-----------------
6x^2y^3
= 5y^2 - 2x
-----------
3x^2y^3
Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Answer:
$19200
Step-by-step explanation:
20,000*0.96=19200
26 feet * 12 inces per foot / 7.5 inches = 41.6, which is 41 full bracelets