Answer:
The 99th tower contains 9900 blocks.
Step-by-step explanation:
From the question given, we were told that the nth tower is formed by stacking n blocks on top of an n times n square of blocks. This implies that the number of blocks in n tower will be:
n + n²
Now let us use the diagram to validate the idea.
Tower 1:
n = 1
Number of blocks = 1 + 1² = 2
Tower 2:
Number of blocks = 2 + 2² = 6
Tower 3:
Number of blocks = 3 + 3² = 12
Using same idea, we can obtain the number of blocks in the 99th tower as follow:
Tower 99:
n = 99
Number of blocks = 99 + 99² = 9900
Therefore, the 99th tower contains 9900 blocks.
Answer:
multiply length with breadth which is 34 *42
The answer, i believe, is B
Answer:
bigger angle is 117°
Step-by-step explanation:
x+x+54= 180 (when two angles are complementary it means that their sum is 180 degrees)
2x+54=180
2x= 180-54
2x=128
x=126/2
x= 63
x1= smaller angle
x1= 63
x2= bigger angle
x2= 63+54
x2=117
Answer:
a = -3
Step-by-step explanation:
Solve for a:
2 (a + 5) - 1 = 3
Hint: | Distribute 2 over a + 5.
2 (a + 5) = 2 a + 10:
(2 a + 10) - 1 = 3
Hint: | Group like terms in 2 a - 1 + 10.
Grouping like terms, 2 a - 1 + 10 = 2 a + (10 - 1):
(2 a + (10 - 1)) = 3
Hint: | Evaluate 10 - 1.
10 - 1 = 9:
2 a + 9 = 3
Hint: | Isolate terms with a to the left hand side.
Subtract 9 from both sides:
2 a + (9 - 9) = 3 - 9
Hint: | Look for the difference of two identical terms.
9 - 9 = 0:
2 a = 3 - 9
Hint: | Evaluate 3 - 9.
3 - 9 = -6:
2 a = -6
Hint: | Divide both sides by a constant to simplify the equation.
Divide both sides of 2 a = -6 by 2:
(2 a)/2 = (-6)/2
Hint: | Any nonzero number divided by itself is one.
2/2 = 1:
a = (-6)/2
Hint: | Reduce (-6)/2 to lowest terms. Start by finding the GCD of -6 and 2.
The gcd of -6 and 2 is 2, so (-6)/2 = (2 (-3))/(2×1) = 2/2×-3 = -3:
Answer: a = -3