Answer:
a) (0, -33, 12)
b) area of the triangle : 17.55 units of area
Explanation:
<h2>
a) </h2>
We know that the cross product of linearly independent vectors
and
gives us a nonzero, orthogonal to both, vector. So, if we can find two linearly independent vectors on the plane through the points P, Q, and R, we can use the cross product to obtain the answer to point a.
Luckily for us, we know that vectors
and
are living in the plane through the points P, Q, and R, and are linearly independent.
We know that they are linearly independent, cause to have one, and only one, plane through points P Q and R, this points must be linearly independent (as the dimension of a plane subspace is 3).
If they weren't linearly independent, we will obtain vector zero as the result of the cross product.
So, for our problem:







<h2>B)</h2>
We know that
and
are two sides of the triangle, and we also know that we can use the magnitude of the cross product to find the area of the triangle:

so:




Energy is the ability to do work so I would say that thermal or heat energy is a type of work. Don’t know if this will work but that’s what I would put.
Answer:
3 mA.
Explanation:
The following data were obtained from the question:
Resistor (R) = 500 Ω
Potential difference (V) = 1.5 V
Current (I) =.?
Using the ohm's law equation, we can obtain the current as follow:
V = IR
1.5 = I x 500
Divide both side by 500
I = 1.5 / 500
I = 3×10¯³ A.
Therefore, the current in the circuit is 3×10¯³ A.
Finally, we shall convert 3×10¯³ A to milliampere (mA).
This can be obtained as follow:
Recall:
1 A = 1000 mA
Therefore,
3×10¯³ A = 3×10¯³ × 1000 = 3 mA
Therefore, 3×10¯³ A is equivalent to 3 mA.
Thus, the current in mA flowing through the circuit is 3 mA.