Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
Explanation:
The acceleration g varies by about 1/2 of 1 percent with position on Earth's surface, from about 9.78 metres per second per second at the Equator to approximately 9.83 metres per second per second at the poles.
Answer:
The fraction of the protons would have no electrons 
Explanation:
We are given that
Amoeba has total number of protons=
Net charge, Q=0.300pC
Electrons are fewer than protons=
We have to find the fraction of protons would have no electrons.
The fraction of the protons would have no electrons
=
The fraction of the protons would have no electrons
=

Hence, the fraction of the protons would have no electrons 
Answer:
Accelerating charges.
Explanation:
Electromagnetic waves are waves produced by the vibration of both electrical and magnetic fields.
This interaction produces an energy source that does not require any medium to propagate.
To produce electromagnetic waves, electric and magnetic fields must be vibrating.
An electric charge produced when vibrating under voltage will produce electromagnetic waves. This is the same for all sources of these waves.
The sun produces electromagnetic waves. A lot of human activities also does this.
An object that has kinetic energy must be <em>moving</em>.
The formula for an object's kinetic energy is
KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>
As you can see from the formula, if the object has no speed, then its kinetic energy is zero. That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.