Answer:
a. 1/6
Step-by-step explanation:
for a, there is only one side that has three
Answer:
8.66 m
Step-by-step explanation:
Given that,
The distance from the top of the building to the tip of the shadow is 14 m
The height of the building is 11 m.
We need to find the length of the shadow. we can see that the length of the shadow forms the base of the triangle.
The distance from the top of the building to the tip of the shadow form hypotensue and height of the building forms perpendicular. So, we can use Pythagoras theorem to find the base.
So,

So, the length of the shadow is 8.66 m.
<span>1.
Photo description: A picture of the Eiffel tower, to be stuck on a mat.
Dimensions (including units): 4 in x 6 in
2. Since 2x would be added to each dimension:
Length: 6 + 2x (inches)
Width: 4 + 2x (inches)
3. Area: A = LW = (6+2x)(4+2x) square inches
4. F: (6)(4) = 24, O: (6)(2x) = 12x, I: (2x)(4) = 8x, L: (2x)(2x) = 4x^2
Polynomial expression: Adding the FOIL terms up: 4x^2 + 20x + 24
5. The area should be in square inches, since we multiplied length (in inches) by width (in inches).
6. Multiply factors using the distribution method:
(6+2x)(4+2x) = 6(4+2x) + 2x(4+2x) = 24 + 12x + 8x + 4x^2 = 24 + 20x + 4x^2
This is identical to the expression in Part 4.
7. x: 24 + 20x + 4x^2
If x = 1.0 in: Area = 24 + 20(1) + 4(1)^2 = 48 in^2
If x = 2.0 in: Area = 24 + 20(2) + 4(2)^2 = 80 in^2
8. If a white mat costs $0.03 per square inch and a black mat costs
$0.05 per square inch, determine the cost of each size of black and
white mat.
x Total area of mat Cost of white mat Cost of black mat
1.0 in, A = 48 in^2, (0.03)(48) = $1.44, (0.05)(48) = $2.40
2.0 in, A = 80 in^2, (0.03)(80) = $2.40, (0.05)(80) = $4.00
9. The cheapest option would be the white mat with 1-in margins on all sides, which would cost $1.44. Without any further criteria on aesthetics or size limitations, this is the most viable option.</span>