Answer:
Explanation:
First we have to use the description of the cell and keep in mind that the <u>left part is the oxidation </u>and the <u>right part is the reduction</u>, so:
Ag(s)|AgBr(s), NaBr(aq, 1.0 M)||CdCl2(aq, 0.050 M)|Cd(s)
Eo = -0.799 V
Eo = -0.402 V
Then we have to multiply the first semireaction by "2" to obtain the <u>same amount of electrons</u> and add the 2 semireactions, so:
Eo = -1.201
Next, using the <u>nerst equation</u> we can calculate the potential of the whole cell:

![E_C_e_l_l=E^{\circ}-\frac{0.0592}{n}Log\frac{[Ag^+]^2}{[Cd^2^+]}](https://tex.z-dn.net/?f=E_C_e_l_l%3DE%5E%7B%5Ccirc%7D-%5Cfrac%7B0.0592%7D%7Bn%7DLog%5Cfrac%7B%5BAg%5E%2B%5D%5E2%7D%7B%5BCd%5E2%5E%2B%5D%7D)
Now, the problem is Q. To calculate the <u>concentrations for</u> Q we have to use the <u>Ksp of AgBr</u> to calculate the free
concentration, so:
AgBr(s) <=> Ag+ + Br-
I ---- 0 1.0
C ---- +x +x
E ---- x 1.0+ x

![5x10^-^1^3=[x][1]](https://tex.z-dn.net/?f=5x10%5E-%5E1%5E3%3D%5Bx%5D%5B1%5D)

With the concentration of
and
given by the problem we can <u>calculate Q</u>:
![Q=\frac{[5x10^-^1^3]^2}{[0.05]}=5x10^-^2^4](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5B5x10%5E-%5E1%5E3%5D%5E2%7D%7B%5B0.05%5D%7D%3D5x10%5E-%5E2%5E4)
Finally, with the <u>nerst equation</u> we can calculate the total voltage:
![E_C_e_l_l=-1.201}-\frac{0.0592}{2}Log[5x10^-^2^4]](https://tex.z-dn.net/?f=E_C_e_l_l%3D-1.201%7D-%5Cfrac%7B0.0592%7D%7B2%7DLog%5B5x10%5E-%5E2%5E4%5D)