1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
3 years ago
12

Tammy picks apples at an orchard. She earns $3.10 for each hour she works and $2.30 for each bushel of apples she picks. Her goa

l is to earn at least $100 this week.
Write an inequality that will help Tammy determine the number of hours (h) and bushels (b) she needs to reach her goal.
Mathematics
1 answer:
qaws [65]3 years ago
8 0

Answer:

3.10h + 2.30b ≥ 100

Step-by-step explanation:

Tammy earns $3.10 for each hour,

Let h represents hour,

So total earning for h number of hours will be 3.10h

Tammy earns $2.30 for each bushel of apples

Let b represents bushel of apples,

So total earning for b number of bushels will be 2.30b

Tammy's goal is to earn at least $100 this week

Therefore, to reach her goal the inequality will be

3.10h + 2.30b ≥ 100

Where h is the number of hour and b is the number of bushels.

You might be interested in
PLEASE HELP I WILL GIVE BRANLIEST TO WHO ANSWERS FIRST
Olegator [25]
56
...................................





8 0
3 years ago
Read 2 more answers
What is the answer to question 3. Letter A?
lutik1710 [3]
Your answer should be Line Graph.
6 0
2 years ago
Read 2 more answers
X + 7у = 23 3х + 14у = 48​
Lelechka [254]

Answer:

x + 7у = 23 3х + 14у = 48​

Step-by-step explanation:

x + 7у = 23 3х + 14у = 48​

8 0
2 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
What quality of a rhombus makes it different from a parallelogram. Please wright in 2 sentences
Umnica [9.8K]
A parallelogram is a quadrilateral<span> or four-sided figure in which the </span>opposite sides are parallel. <span> A rhombus, on the other hand, may be defined as an equilateral parallelogram.</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • What's greater 20% or 0.02
    7·1 answer
  • Convert 3.92 into a mixed number in simplest form
    8·1 answer
  • Find the 15th term in the arithmetic sequence An=3n-7
    9·1 answer
  • What is the simplest form
    5·1 answer
  • What does the fraction 4/5 mean? Show how can it be written using division?
    7·2 answers
  • A triangle shaped flag is shown 6 ft 4 ft enter the area of the flag in square feet ​
    13·2 answers
  • Mario reduced a picture that is 10 inches long by 8 inches wide using a photocopier. The reduced picture is now 6 inches long. B
    13·1 answer
  • Julia has 4 gallons 2 quarts of water.Ally needs the same amount of water but only has 12 quarts.How much more water does Ally n
    5·1 answer
  • Can anyone help me??????
    9·1 answer
  • Express the ratio 4:7 in the form n:1
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!