There are no pictures I see you can text me on insta if you need help original_loredo
Answer:68.3 degrees
Step-by-step explanation:
The diagram of the triangle ABC is shown in the attached photo. We would determine the length of side AB. It is equal to a. We would apply the cosine rule which is expressed as follows
c^2 = a^2 + b^2 - 2abCos C
Looking at the triangle,
b = 75 miles
a = 80 miles.
Angle ACB = 180 - 42 = 138 degrees. Therefore
c^2 = 80^2 + 75^2 - 2 × 80 × 75Cos 138
c^2 = 6400 + 5625 - 12000Cos 138
c^2 = 6400 + 5625 - 12000 × -0.7431
c^2 = 12025 + 8917.2
c = √20942.2 = 144.7
To determine A, we will apply sine rule
a/SinA = b/SinB = c/SinC. Therefore,
80/SinA = 144.7/Sin 138
80Sin 138 = 144.7 SinA
SinA = 53.528/144.7 = 0.3699
A = 21.7 degrees
Therefore, theta = 90 - 21.7
= 68.3 degees
The answer is 196 14x14=196
Answer:
the answer is 3/4
Step-by-step explanation:
please make me Brainliest
A) because when they are equal it means that their y has the same value, which means their intersection point.
B) You should take all integers from (-2, 2) which are: -2, -1, 0, 1, 2 and put them one by one in the example:
x = -2
y1 = 4^-(-2) = 4^2 = 16
y2 = 2^(-(-2) + 1) = 2^(2+1) = 2^3 = 8
y1 ≠ y2 => so x=-2 isn't our answer
-------------------------------------------------------
x = -1
y1 = 4^-(-1) = 4^1 = 4
y2 = 2^(-(-1) + 1) = 2^(1+1) = 2^2 = 4
y1 = y2 => so our answer will be x = -1
-------------------------------------------------------
x = 0
y1 = 4^-(0) = 4^0 = 1
y2 = 2^(-(0) + 1) = 2^(0+1) = 2^1 = 2
y1 ≠ y2 => so x=0 isn't our answer
--------------------------------------------------------------
x = 1
y1 = 4^-(1) = 4^(-1) = 1/4
y2 = 2^(-(1) + 1) = 2^(-1+1) = 2^0 = 1
y1 ≠ y2 => so x=1 isn't our answer
--------------------------------------------------------------
x = 2
y1 = 4^-(2) = 4^(-2) = 1/16
y2 = 2^(-(2) + 1) = 2^(-2+1) = 2^(-1) = 1/2
y1 ≠ y2 => so x=2 isn't our answer
Which means that our final answer is: x=-1
C) You should draw both graphics, and their intersection point (x) will be the answer.
I hope it helped.