In this we need to approximate definite integral by midpoint formula.
According to this formula if we have to calculate

then we will divide the interval [a,b] into n subinterval of equal width.
Δx =

So we will denote each of interval as follows
![[x_0 , x_1] , [x_1, x_2], ................[x_{n-1} , x_n]](https://tex.z-dn.net/?f=%5Bx_0%20%2C%20x_1%5D%20%2C%20%5Bx_1%2C%20x_2%5D%2C%20................%5Bx_%7Bn-1%7D%20%2C%20x_n%5D)
where

Then for each interval we will calculate midpoint.
So we can calculate definite integral as

where

are midpoint of each interval.
So in given question we need to calculate

. So we will divide our interval in 6 equal parts.
Given interval is [1,2]

So we will denote 6 interval as follows
![[1 , \frac{7}{6}] , [ \frac{7}{6} , \frac{8}{6} ] , [ \frac{8}{6} , \frac{9}{6} ] , [ \frac{9}{6} , \frac{10}{6} ] , [ \frac{10}{6} , \frac{11}{6} ] , [ \frac{11}{6} , 2 ]](https://tex.z-dn.net/?f=%5B1%20%2C%20%20%5Cfrac%7B7%7D%7B6%7D%5D%20%2C%20%5B%20%5Cfrac%7B7%7D%7B6%7D%20%2C%20%20%5Cfrac%7B8%7D%7B6%7D%20%5D%20%2C%20%5B%20%5Cfrac%7B8%7D%7B6%7D%20%2C%20%20%5Cfrac%7B9%7D%7B6%7D%20%5D%20%2C%20%5B%20%5Cfrac%7B9%7D%7B6%7D%20%2C%20%20%5Cfrac%7B10%7D%7B6%7D%20%5D%20%2C%20%5B%20%5Cfrac%7B10%7D%7B6%7D%20%2C%20%20%5Cfrac%7B11%7D%7B6%7D%20%5D%20%2C%20%5B%20%5Cfrac%7B11%7D%7B6%7D%20%2C%20%202%20%5D%20%20%20%20%20)
Now midpoint of each interval is






So

for the given function is

So