Answer:
A
Step-by-step explanation:
I got it right on the assignment 100%
Answer:
a
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
b
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
c
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
d
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
Step-by-step explanation:
Considering a

Looking at this we that at x = 3 this integral will be infinitely discontinuous
Considering b

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering c

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering d

Looking at the integral we see that at x = 0 cot (0) will be infinity hence the integral has an infinite discontinuity , so it is a Type 2 improper integral
Answer:
21.16
Step-by-step explanation:
Starting from the theory we have the following equation:

Using the data supplied in the exercise, we have subtracting the mean and dividing by the standard deviation:

solving for "c", knowing that fi is a tabulating value:

therefore the value of c is equal to 21.16
Answer:
C. (6, 5) and (3, -4)
Step-by-step explanation:
Given the equation 3x - y = 13, we need to figure out which points satisfy it. In order for an ordered pair to satisfy an equation, when we plug the x-coordinate in for x and the y-coordinate in for y, the equation should hold true.
Let's try with (6, 5):
3x - y = 13
3 * 6 - 5 =? 13
18 - 5 =? 13
13 = 13
Since this is true, we know that (6, 5) is indeed a solution.
Now let's try with (3, -4):
3x - y = 13
3 * (3) - (-4) =? 13
9 + 4 =?13
13 = 13
Again, since this is true, then (3, -4) must be a solution.
Thus, the answer is C.
<em>~ an aesthetics lover</em>
Don't understand the question your asking