1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
2 years ago
9

Given the function

Mathematics
1 answer:
nika2105 [10]2 years ago
4 0

\left \{ {{7x+6\:\:\:\:\:\:x

f(-1)

Solve

-7\cdot \:1+6x                          Swap the negative sign

-7+6x                               Multiply the numbers

-7+6x+7                  Add 7 to both sides

6x                                       Simplify

\frac{6x}{6}                                       Divide both sides by 6

x                                        Simplify

-7\cdot \:1+12x                     Swap the negative sign

-7+12x                          Multiply the numbers

-7+12x+7              Add 7 to both sides

12x                                   Simplify

\frac{12x}{12}                                  Divide both sides by 12

x                                      Simplify

You might be interested in
Ahmed was invited at a party at his friend’s place at 20:00 hours. He left the house at 17:00 hours and travelled in his car at
WARRIOR [948]

Answer:

yes he did make it, when he left at 17:00 he had 3:00 hours to make it to the party. if you divide 200/80=2.5 meaning he's able to make it in 2.5 hours.

3 0
2 years ago
Simplify 7 (2x + 4) + 14.
bearhunter [10]

Answer: 14x + 42

7(2x+4)+14

14x + 28 + 14

<u>14x + 42</u>

Step-by-step explanation:

6 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
34.82 in expanded form
kvv77 [185]
Thirty-four decimal point eighty-two
5 0
3 years ago
Read 2 more answers
Do this to get brainiest!
IceJOKER [234]

Answer: 8. 3^4+n^4, 9. 7^3+m^4, and 10. s+2t^3.

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • (8 -2i)^2 <br>a:60 <br>b:68-32i <br>c:60-32i <br>d:64-32i+4i^2
    13·1 answer
  • Welppoo plzzzzzzzzzzzzzz
    12·2 answers
  • A parachutist's rate during a free fall reaches 99
    7·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    6·2 answers
  • Sue has 100 dimes and quarters. If the total value of the coins is $21.40, how many of each kind of coins does she have?
    13·1 answer
  • What is the slope of a line parallel to 3x + y = 7<br><br> A. 1/3<br> B. -3<br> C. 3<br> D. -1/3
    10·2 answers
  • Compute the volume of the right prism.<br><br> please helppp
    9·1 answer
  • A particular dress requires 4 1/4 yards of fabric for manufacturing. If the matching jacket requires 1/6 yards less fabric, how
    14·2 answers
  • Solve the problem
    6·1 answer
  • 9. Chocolate Co. mixes two kinds of chocolate bars
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!