Answer: 459.14 N
Explanation:
from the question, we have
diameter = 10 m
radius (r) = 5 m
weight (Fw) = 670 N
time (t) = 8 seconds
Circular motion has centripetal force and acceleration pointing perpendicular and inwards of the path, therefore we apply the equation below
∑ F = F c = F w − Fn ..............equation 1
Fn = Fw − Fc = mg − (mv^2 / r) ...................equation 2
substituting the value of v as (2πr / T) we now have
Fn = mg − (m(2πr / T )^2) / r
Fn= mg − (4(π^2)mr / T^2) ..........equation 3
Fw (mass of the person) = mg
therefore m = Fw / g
m = 670 / 9.8 = 68.367 kg
now substituting our values into equation 3
Fn = 670 - ( (4 x (π^2) x 68.367 x 5 ) / 8^2)
Fn = 670 - 210.86
Fn = 459.14 N
Volume = mass / density = 45.6/10.5 = .... L
Answer:
Lens at a distance = 7.5 cm
Lens at a distance = 6.86 cm (Approx)
Explanation:
Given:
Object distance u = 12 cm
a) Focal length = 20 cm
b) Focal length = 16 cm
Computation:
a. 1/v = 1/u + 1/f
1/v = 1/20 + 1/12
v = 7.5 cm
Lens at a distance = 7.5 cm
b. 1/v = 1/u + 1/f
1/v = 1/16 + 1/12
v = 6.86 cm (Approx)
Lens at a distance = 6.86 cm (Approx)
Answer:

Explanation:
To solve this exercise it is necessary to take into account the concepts related to gravitational potential energy, as well as the concept of perigee and apogee of a celestial body.
By conservation of energy we know that,

Where,

Replacing


Our values are given by,





Replacing at the equation,


Therefore the Energy necessary for Sputnik I as it moved from apogee to perigee was 