Answer:
2.5722 .
_____________________________________________________ Explanation: _________________________________________________ log(base "

" of 19 = y ? ; Solve for "y" ;
__________________________________________________ 
^ (y) = 19 ; Solve for "y" ?
__________________________________________________Take the "ln" (that is, "natural logarithm", of both sides:
__________________________________________________ ln [

^ (y) ] = ln 19 ;
__________________________________________________ y * ln

= ln 19 .
__________________________________________________ Use "3.1416" as an approximation for: "

" ;
__________________________________________________ y * ln (3.1416) = ln 19 ;
__________________________________________________ Divide EACH side of the equation by: " [ ln (3.1416) ]" ; to isolate "y" on one side of the equation; and to solve for "y"; (Use a calculator to do this) ;
_________________________________________________________ y * ln (3.1416) / [ ln (3.1416) ] = ln 19 / [ ln (3.1416) ] ;
________________________________________________________ y = ln 19 / [ ln (3.1416) ] ;
_______________________________________________________ y = 2.5721639670047041 ;
→ round to nearest 4 (FOUR) decimal places;
_______________________________________________________ → y =
2.5722 .________________________________________________________