The solution set of the equation x^2 + 2x - 48 = 0 is x = -1 ± 7
<h3>How to determine the solution set of the equation?</h3>
The equation is given as:
x^2 + 2x - 48 = 0
A quadratic equation is represented as:
ax^2 + bx + c = 0
By comparing both equations, we have
a = 1, b = 2 and c = -48
The solution of the quadratic equation is then calculated using
x = (-b ± √(b^2 - 4ac))/2a
Substitute values for a, b and c in the above equation
x = (-2 ± √(2^2 - 4 * 1 * -48))/2 * 1
This gives
x = (-2 ± √196)/2
Evaluate the square root of 196
x = (-2 ± 14)/2
Divide through by 2
x = -1 ± 7
Hence, the solution set of the equation x^2 + 2x - 48 = 0 is x = -1 ± 7
Read more about quadratic equation at:
brainly.com/question/1214333
#SPJ1
The probability that a worker chosen at random works at least 8 hours is Option C: 0.84 approx.
<h3>How to evaluate the probability of a random variable getting at least some fixed value?</h3>
Suppose the random variable in consideration be X, and it is discrete.
Then, the probability of X attaining at least 'a' is written as:

It is evaluated as:

The probability distribution of X is:
x f(x) = P(X = x)
6 0.02
7 0.11
8 0.61
9 0.15
10 0.09
Worker working at least 8 hours means X attaining at least 8 as its values.
Thus, probability of a worker chosen at random working 8 hours is
P(X ≥ 8) = P(X = 8) + P(X = 9) +P(X = 10) = 0.85 ≈ 0.84 approx.
By the way, this probability distribution seems incorrect because sum of probabilities doesn't equal to 1.
The probability that a worker chosen at random works at least 8 hours is Option C: 0.84 approx.
Learn more about probability distributions here:
brainly.com/question/14882721
Answer:3.6 m
Given:10cm=2m
Then, 5cm=1m
Therefore, (18/5)= lenght I'm meters on blueprint scale
(18/5)=3.6m
Elevation per minute
elevationchange=-8212
timechange=214
elevation per minute=-8212/214=
-8132/214-80/214=
-38-40/107=
-38 and 40/107
answer is -38 and 40/107 ft per minute
Answer:
48 minutes
Step-by-step explanation:



It will take 48 more minutes to finish raking the backyard.