The molar mass of Fe would be 55.8450.
We know that each millimeter contains 10⁻³ meters. Writing this as a ratio:
1 mm : 10⁻³ m
We require a conversion from m³ to mm³, so we must take the cube of the ratio we have made:
1 mm³ = (10⁻³)³ m³
Therefore, the conversion used will be:
(1 mm / 10⁻³ m)³
When we multiply by this conversion, we will get:
32 m³ = 32 x 10⁹ mm³
Answer:
Quantitative experiments show that 4.18 Joules of heat energy are required to raise the temperature of 1g of water by 1°C. Thus, a liter (1000g) of water that increased from 24 to 25°C has absorbed 4.18 J/g°C x 1000g x 1°C or 4180 Joules of energy.
Answer:

Explanation:
Hello,
In this case, for the dissociation of calcium fluoride:

The equilibrium expression is:
![Ksp=[Ca^{2+}][F^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BCa%5E%7B2%2B%7D%5D%5BF%5E-%5D%5E2)
In such a way, via the ICE procedure, including an initial concentration of calcium of 0.01 M (due to the calcium nitrate solution), the reaction extent
is computed as follows:

Thus, the molar solubility equals the reaction extent
, therefore:

Regards.