Answer:
1. The pH of 1.0 M trimethyl ammonium (pH = 1.01) is lower than the pH of 0.1 M phenol (5.00).
2. The difference in pH values is 4.95.
Explanation:
1. The pH of a compound can be found using the following equation:
![pH = -log([H_{3}O^{+}])](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20)
First, we need to find [H₃O⁺] for trimethyl ammonium and for phenol.
<u>Trimethyl ammonium</u>:
We can calculate [H₃O⁺] using the Ka as follows:
(CH₃)₃NH⁺ + H₂O → (CH₃)₃N + H₃O⁺
1.0 - x x x
![Ka = \frac{[(CH_{3})_{3}N][H_{3}O^{+}]}{[(CH_{3})_{3}NH^{+}]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5B%28CH_%7B3%7D%29_%7B3%7DN%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5B%28CH_%7B3%7D%29_%7B3%7DNH%5E%7B%2B%7D%5D%7D)

By solving the above equation for x we have:
x = 0.097 = [H₃O⁺]
<u>Phenol</u>:
C₆H₅OH + H₂O → C₆H₅O⁻ + H₃O⁺
1.0 - x x x
![Ka = \frac{[C_{6}H_{5}O^{-}][H_{3}O^{+}]}{[C_{6}H_{5}OH]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DOH%5D%7D)


Solving the above equation for x we have:
x = 9.96x10⁻⁶ = [H₃O⁺]
![pH = -log([H_{3}O^{+}]) = -log(9.99 \cdot 10^{-6}) = 5.00](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20%3D%20-log%289.99%20%5Ccdot%2010%5E%7B-6%7D%29%20%3D%205.00%20)
Hence, the pH of 1.0 M trimethyl ammonium is lower than the pH of 0.1 M phenol.
2. The difference in pH values for the two acids is:
Therefore, the difference in pH values is 4.95.
I hope it helps you!
Continental plates are much thicker that Oceanic plates. At the convergent boundaries the continental plates are pushed upward and gain thickness. The rocks and geological layers are much older on continental plates than in the oceanic plates. The Continental plates are much less dense than the Oceanic plates.
The continent rest on massive slabs of rocks called tectonics
Answer:
4.22
Explanation:
pH stands for potential hydrogen. The letter “p” denotes potential and the letter “H” denotes hydrogen.
pH helps to find the acidity or alkalinity of an aqueous solution.
The number of hydrogen ions (protons) present in a solution is determined by the pH scale.
A pH greater than 7 makes the water more alkaline and a pH less than 7 makes the water more acidic.
![pH=-\log [H^+]=-\log [0.00006]=4.22](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%3D-%5Clog%20%5B0.00006%5D%3D4.22)