Answer:
Experimentation
Explanation:
The loblolly pine tree is a member of the yellow pine group which is grown in plantations for commercial production of timber.The tree itself can reach a height of 40 meters with a truck of 1 meter in diameter.Pines have long needle-like leaves held in bundles. A researcher can measure the length of the needles, count the number of needles in a bundle, and measure the length of the sheath.Loblloly pine needles measure up to 17 cm long.The researcher can also weigh a bundle and determine the weight of the needles.This is field experiment that will require a measuring device for weight and length so observation alone won't provide the needed data.
I'm going to say carrying capacity since carrying capacity is the maximum amount of organisms that can live in an ecosystem. So the reason for there being a maximum of organisms is because, like the question says, organisms usually produce more offspring than the ecosystem can support.
Since the rocket’s acceleration is 3.00 m/s^3 * t, its acceleration is increasing at the rate of 3 m/s^3 each second. The equation for its velocity at a specific time is the integral of the acceleration equation.
<span>vf = vi + 1.5 * t^2, vi = 0 </span>
<span>vf = 1.5 * 10^2 = 150 m/s </span>
This is the rocket’s velocity at 10 seconds. The equation for its height at specific time is the integral velocity equation
<span>yf = yi + 0.5 * t^3, yi = 0 </span>
<span>yf = 0.5 * 10^3 = 500 meters </span>
<span>This is the rocket’s height at 10 seconds. </span>
<span>Part B </span>
<span>What is the speed of the rocket when it is 345 m above the surface of the earth? </span>
<span>Express your answer with the appropriate units. </span>
<span>Use the equation above to determine the time. </span>
<span>345 = 0.5 * t^3 </span>
<span>t^3 = 690 </span>
<span>t = 690^⅓ </span>
<span>This is approximately 8.837 seconds. Use the following equation to determine the velocity at this time. </span>
<span>v = 1.5 * t^2 = 1.5 * (690^⅓)^2 </span>
<span>This is approximately 117 m/s. </span>
<span>The graph of height versus time is the graph of a cubic function. The graph of velocity is a parabola. The graph of acceleration versus time is line. The slope of the line is the coefficient of t. This is a very different type of problem. For the acceleration to increase, the force must be increasing. To see what this feels like slowly push the accelerator pedal of a car to the floor. Just don’t do this so long that your car is speeding!!</span>
When the contracting gas and dust from nebula become so dense and hot that nuclear fusion starts
Answer:
Eleven seconds.
Explanation:
Two keys are needed to solve this problem. First, the conservation of momentum: allowing you to calculate the cart's speed after the elephant jumped onto it. It holds that:

So, once loaded with an elephant, the cart was moving with a speed of 4.29m/s.
The second key is the kinematic equation for accelerated motion. There is one force acting on the cart, namely friction. The friction acts in the opposite direction to the horizontal direction of the velocity v0, its magnitude and the corresponding deceleration are:

The kinematic equation describing the decelerated motion is:

It takes 11 seconds for the comical elephant-cart system to come to a halt.