Based on the calculations, the unit rate in feet per minute for this walking pace is equal to 250 feet per minute.
<h3>How to calculate the unit rate?</h3>
A unit rate refers to a measurement of a quantity which is calculated as a ratio of one parameter to another.
This ultimately implies that, we would divide the distance covered in feet by the time taken to cover this distance as follows:
Unit rate = distance/time
Unit rate = 3750/15
Unit rate = 250 feet per minute.
Read more on time here: brainly.com/question/12199398
#SPJ1
Answer:
1 1/3
Step-by-step explanation:
Answer:
300 i think
Step-by-step explanation:
Answer: C
Step-by-step explanation:
<u>Given:</u>
Sample size (n) = 50
x = 12
![\widehat{\mathbf{p}}=\frac{\mathbf{x}}{n}=\frac{12}{50}=0.24](https://tex.z-dn.net/?f=%5Cwidehat%7B%5Cmathbf%7Bp%7D%7D%3D%5Cfrac%7B%5Cmathbf%7Bx%7D%7D%7Bn%7D%3D%5Cfrac%7B12%7D%7B50%7D%3D0.24)
Confidence level = 90%
α = 1 − 0.90 = 0.10
α/2 = 0.05
![\text { Critical value }\left(z_{c}\right)=z_{\frac{\alpha}{2}}=z_{0.05}=1.6449](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Critical%20value%20%7D%5Cleft%28z_%7Bc%7D%5Cright%29%3Dz_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%3Dz_%7B0.05%7D%3D1.6449)
(from standard normal table)
90% Confidence interval is,
![\begin{aligned}&\text { Confidence interval }=\widehat{\mathbf{p}} \pm z_{c} \times \sqrt{\frac{\hat{\mathbf{p}}(1-\hat{\mathbf{p}})}{n}} \\&\text { C. I }=0.24 \pm 1.6449 \times \sqrt{\frac{0.24(1-0.24)}{50}} \\&\text { C. I }=0.24 \pm 1.65 \times \sqrt{\frac{0.24(1-0.24)}{50}}\left\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26%5Ctext%20%7B%20Confidence%20interval%20%7D%3D%5Cwidehat%7B%5Cmathbf%7Bp%7D%7D%20%5Cpm%20z_%7Bc%7D%20%5Ctimes%20%5Csqrt%7B%5Cfrac%7B%5Chat%7B%5Cmathbf%7Bp%7D%7D%281-%5Chat%7B%5Cmathbf%7Bp%7D%7D%29%7D%7Bn%7D%7D%20%5C%5C%26%5Ctext%20%7B%20C.%20I%20%7D%3D0.24%20%5Cpm%201.6449%20%5Ctimes%20%5Csqrt%7B%5Cfrac%7B0.24%281-0.24%29%7D%7B50%7D%7D%20%5C%5C%26%5Ctext%20%7B%20C.%20I%20%7D%3D0.24%20%5Cpm%201.65%20%5Ctimes%20%5Csqrt%7B%5Cfrac%7B0.24%281-0.24%29%7D%7B50%7D%7D%5Cleft%5Cend%7Baligned%7D)
Therefore, 90% confidence interval for the true proportion of sophomores who favour the adoption of uniforms is C