The length of time required for half of the radioactive atoms in a sample to decay is its <span>half-life. The correct option among all the options that are given in the question is the first option or option "A". The other choices are incorrect and can be easily neglected. I hope that this is the answer that has come to your help.</span>
Binary compounds<span> are easy to </span>name<span>. The cation is always </span>named<span> first and gets its </span>name<span> from the </span>name <span>of the element. For example, K+ is </span>called<span> a potassium </span>ion<span>. An anion also takes its </span>name<span> from its element, but it adds the suffix -ide to it.</span>
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Neither a weak acid nor a weak base has a strong tendency to transfer H+ ions that is why<span> weak acid-weak base reactions not go to completion.</span>