Answer:
The molar mass of unknown gas is 145.82 g/mol.
Explanation:
Volume of oxygen gas effused under time t = 8.24 mL
Effusion rate of oxygen gas = 
Molar mass of oxygen gas = 32 g/mol
Volume of unknown gas effused under time t = 3.86 mL
Effusion rate of unknown gas = 
Molar mass of unknown gas = M
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:




Answer:
Las moléculas de los reactivos tienen que chocar entre sí. Estos choques deben de producirse con energía suficiente de forma que se puedan romper y formar enlaces químicos. En el choque debe haber una orientación adecuada para que los enlaces que se tienen que romper y formar estén a una distancia y posición viable.
This law (expressed mathematically as E = σT4) states that each gadget with temperatures above absolute zero (0K or -273°C or -459°F) emits radiation at a charge proportional to the fourth energy in their absolute temperature.
Wien's displacement law states that the black body radiation curve for one-of-a-kind temperatures height at a wavelength is inversely proportional to temperature.
Wien's displacement law It states that the better the temperature, the lower the wavelength λmax for which the radiation curve reaches its most. The shift to shorter wavelengths corresponds to photons of better energies. In other phrases, λmax (height wavelength) is inversely proportional to temperature.
Wien's regulation, named after the German Physicist Wilhelm Wien, tells us that gadgets of different temperatures emit spectra that height at distinctive wavelengths. hotter objects emit radiations of shorter wavelengths and for this reason, they seem blue.
Wien's regulation tells us that gadgets of various temperatures emit spectra that top at specific wavelengths. hotter gadgets emit a maximum of their radiation at shorter wavelengths; subsequently, they will seem like bluer. Cooler gadgets emit most of their radiation at longer wavelengths; consequently, they'll appear redder.
Learn more about Wien's law here: brainly.com/question/13380837
#SPJ4
Ba(OH)2 is an basic solution. It has more OH- ions than H+ ions. pOH should be calculated to find out its pH
The reaction is
Ba(OH)2 ⇒ Ba2+ (aq) + 2 OH-(aq)
One mole barium hydroxide releases 2 moles hydroxide ions.
Use that ratio to calculate molarity (M) of OH- ions [OH-]. The ratio is 1:2.
0.10 M Ba(OH)2 release 2*0.10 M= 0.02 M OH- ions
[OH-]= 0.02
pOH= - log [OH-] = - log 0.02 = 1.7
Thats not the answer! We found pOH of the solution before titration.
pH and pOH relationship is shown by formula of pH+pOH= 14
pH= 14-pOH
pH= 14-1.7= 12.3