Answer:
25.2 cm
Explanation:
K = 1050 N/m
m = 1.95 kg
h = 1.75 m
By the conservation of energy, the potential energy of the block is converted into the potential energy stored in the spring
m g h = 1/2 x k x y^2
Where, y be the distance by which the spring is compressed.
1.95 x 9.8 x 1.75 = 1/2 x 1050 x y^2
33.44 = 525 x y^2
y = 0.252 m
y = 25.2 cm
Answer:
Option C
Explanation:
Iron is magnetic, so when you shave it into tiny pieces and use a magnet all the little pieces are going to form the shape of the magnetic field. copper isnt magnetic, option B is just ubsurd, and DONT EVER put a magnet next to your phone, if the magnet is strong enough you could damage it.
Please mark as brainliest :)
Answer:
The small pebble
Explanation:
Since the potential energy, P.E lost equals kinetic energy, K.E gained,
P.E = K.E
P.E = mgh = K.E
So, K.E = mgh where g = acceleration due to gravity and h = height of drop
Since h and g are constant
K.E ∝ m
So, the kinetic energy of the object is directly proportional to its mass. Thus, the object with the smaller mass has the lesser kinetic energy.
Since the object with the smaller mass is the small pebble, so the small pebble would have less kinetic energy as it crashes on the road at the bottom of the mountain.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
