Answer:
a. 8.3 minutes average distance from earth to the sun
d. 93 miles or 150 million km
Explanation:
The distance between the earth and the sun is defined as an astronomical unit (AU). It takes 8.3 minutes to go from earth to the sun at the speed of light. That distance has a length of 150 million Kilometers or 93 miles.
It is common to see in planet charts that distance to the sun are compared in astronomical units. In the case of Mars is 1.524 AU away from the sun.
Answer:
Anna is correct.
Explanation:
Anna is right as a satellite is in free fall because it keeps falling toward Earth, meaning that gravity is the only force acting on it. Tom is incorrect because an object does not have to accelerate at a certain speed to be considered to be in free fall. As long as gravity is the only force acting upon the object, it is considered to be in free fall.
Answer:
d = 10 inch
Explanation:
The farthest distance between the centers, is along the diagonal of the rectangle. Therefore, we need to calculate the diagonal of the rectangle, but counting the fact that we have both circles.
So if, one side is 12 inch, and the other is 14 inch, we can use the Pitagoras theorem which is:
d = √(a²) + (b)²
Where a and b, are the lenght of the rectangle, but without the lenght of the diameter of both circles.
With this, the expression is this:
d = √(14 - 6)² + (12 - 6)²
d = √64+36
d = √100
d = 10 inches
Answer:
The translational kinetic energy is 225 J
The rotational kinetic energy is 225 J
Explanation:
Given;
mass of the wheel, m = 2-kg
linear speed of the wheel, v = 15 m/s
Transnational kinetic energy is calculated as;
E = ¹/₂MV²
where;
M is mass of the moving object
V is the velocity of the object
E = ¹/₂ x 2 x (15)²
E = 225 J
Rotational kinetic energy is calculated as;
E = ¹/₂Iω²
where;
I is moment of inertia
ω is angular velocity

E = ¹/₂ x 2 x (15)²
E = 225 J
Thus, the translational kinetic energy is equal to rotational kinetic energy
Maybe this can help:
https://blogs.bu.edu/ggarber/interlace/pendulum/energy-in-a-pendulum/