1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
6

You are watching an archery tournament when you start wondering how fast an arrow is shot from the bow. Remembering your physics

, you ask one of the archers to shoot an arrow parallel to the ground. You find the arrow stuck in the ground 63.0 mm away, making a 2.8 ∘∘ angle with the ground. Ignore all possible aerodynamic effects on the motion of the arrow. Use 9.80 m/s22 for the acceleration due to gravity.
Physics
1 answer:
spayn [35]3 years ago
6 0

Answer:

v_0 = 3.53~{\rm m/s}

Explanation:

This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.

The initial velocity is in the x-direction, and there is no acceleration in the x-direction.

On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.

Applying the equations of kinematics in the x-direction gives

x - x_0 = v_{x_0} t + \frac{1}{2}a_x t^2\\63 \times 10^{-3} = v_0t + 0\\t = \frac{63\times 10^{-3}}{v_0}

For the y-direction gives

v_y = v_{y_0} + a_y t\\v_y = 0 -9.8t\\v_y = -9.8t

Combining both equation yields the y_component of the final velocity

v_y = -9.8(\frac{63\times 10^{-3}}{v_0}) = -\frac{0.61}{v_0}

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

\tan(\theta) = \frac{v_y}{v_x}\\\tan(177.2^\circ) = -0.0489 = \frac{v_y}{v_0} = \frac{-0.61/v_0}{v_0} = -\frac{0.61}{v_0^2}\\v_0 = 3.53~{\rm m/s}

You might be interested in
Two positive charges are equal. Which has more electric potential energy?
Xelga [282]

Electrostatic potential energy of a system of charge is given by

U = \frac{kq_1q_2}{r}

here we have

q_1,q_2 = two charges of different magnitudes

r = distance between charges

so here we can see that electrostatic potential energy will depends upon the product of two charges and inversely depends upon the distance between the two charges

So here we can say that the electrostatic potential energy of two charges will be same and equal to each other

7 0
3 years ago
Read 2 more answers
The brain is most active during which portion each sleep cycle
s2008m [1.1K]
Its during REM sleep. hope this helped
7 0
3 years ago
Read 2 more answers
How does space promote science education
Fittoniya [83]
<span>NASA and the Mad Science Group of Montreal, Canada, have teamed in an effort to spark the imagination of children, encouraging more youth to pursue careers in science, technology, engineering and math. The two organizations recently signed a Space Act Agreement, officially launching the development of the Academy of Future Space Explorers.</span>
3 0
3 years ago
In the mobile m1=0.42 kg and m2=0.47 kg. What must the unknown distance to the nearest tenth of a cm be if the masses are to be
LuckyWell [14K]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Explanation:

From he question we are told that

    The first mass is   m_1 = 0.42kg

      The second mass is  m_2 = 0.47kg

From the question we can see that at equilibrium the moment about the point where the  string  holding the bar (where m_1 \ and \ m_2 are hanged ) is attached is zero  

   Therefore we can say that

               m_1 * 15cm  = m_2 * xcm

Making x the subject of the formula  

                x = \frac{m_1 * 15}{m_2}

                    = \frac{0.42 * 15}{0.47}

                     x = 13.4 cm

Looking at the diagram we can see that the tension T  on the string holding the bar where m_1  \  and   \ m_2 are hanged  is as a result of the masses (m_1 + m_2)

     Also at equilibrium the moment about the point where the string holding the bar (where (m_1 +m_2)  and  m_3 are hanged ) is attached is  zero

   So basically

          (m_1 + m_2 ) * 20  = m_3 * 30

          (0.42 + 0.47)  * 20 = 30 * m_3

 Making m_3 subject

          m_3 = \frac{(0.42 + 0.47) * 20 }{30 }

                m_3 = 0.59 kg

3 0
4 years ago
A 4 kg bird is flying with a velocity of 4 m/s. What is its kinetic energy?
Maslowich
32 kg m/s would be the kinetic energy.
3 0
3 years ago
Other questions:
  • A toy car is tied to a string and pulled across a table horizontally. Which is the
    10·2 answers
  • If 125 j of heat energy is applied to a block of silver weighing 29.3 g, by how many degrees will the tem- perature of the silve
    5·1 answer
  • The difference in energy () between vibrational energy levels is determined by the nature of the bond. If a photon of light poss
    15·1 answer
  • Some of the earliest work on ________ was conducted by Faraday.
    15·2 answers
  • Two small identical balls A and B are held a distance r apart on a frictionless surface, with i very large compared with the siz
    6·1 answer
  • A student is planning an investigation on the properties of different types of matter. What would be the best method to find the
    8·2 answers
  • Place these bodies of our solar system in the proper order of formation
    5·2 answers
  • Know the parts of an animal cell and rheir function​
    9·1 answer
  • An unfortunate 18 kg monkey falls from a 40 m tall tree. What is the monkeys final velocity just befor he impacts the ground.? a
    11·1 answer
  • if you poured oil and water into a beaker , which liquid would be on top and which would be on the bottom ? How would the densit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!