1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
10

A calculator screen shows a number in scientific notation as 4.67e-8 write this number in standard form

Mathematics
1 answer:
Amanda [17]3 years ago
5 0

Answer:

467 000 000

Step-by-step explanation:

4.67e-8 is rewritten as 4.67 x 10^-8.

Negative -> decimal with lots of places, Positive -> big, big number

Move the decimal place right 8 times so you end up with a small decimal.

4.67 -> 467000000

You might be interested in
Two dressers side bye side one is 5 feet 11 inches wide, and the other is 3 feet 5 inches wide together how wide are they
azamat
5 feet 11 inches plus 3 feet 5 inches equals 8 feet 16 inches, but there is 12 inches in a foot, and 16 inches - 12 = 4 inches, add the one foot you took away to 8. The answer is 9 feet 4 inches.
7 0
3 years ago
Please help!! I will make you brainlest.
Strike441 [17]

Answer:

Step-by-step explanation:

These problems are based on triangle ratios. You cannot use the Pythagorean theorem to solve them.

The first triangle is a 45 45 90 degree triangle (I'm talking about the angles), and so, the ratio is 1:1:\sqrt{2\\}, so I have to divide the hypotenuse by \sqrt{2\\} to get the legs. The hypotenuse is 15\sqrt{6}, so that divided by \sqrt{2\\} is 15\sqrt{3\\}. X is the same length as y because of the triangle ratio, so both x and y for the first triangle are 15\sqrt{3\\}.

The second triangle is a 30 60 90 degree triangle, so the ratio is x:x\sqrt{3}:2x. The short leg is 7\sqrt{3}, so 7\sqrt{3} * 2 is the hypotenuse, which is 14\sqrt{3}. The long leg is 7\sqrt{3} * \sqrt{3}, which is 21. So, x for the second triangle is 14\sqrt{3}, and y for the second triangle is 21.

4 0
3 years ago
Read 2 more answers
You are a truck driver for a distribution center. You drove 30 hours in 5 days. What is your per day average?
andreyandreev [35.5K]
30/5=6. Your daily average is 6 hours.
3 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
the distance an ant can travel on the ground varies directly with the amount of time it spends traveling. If an ant travels 7.5
kompoz [17]

Answer:

OK so:20 on average

Step-by-step explanation:

7.5 divided by 1.5=5 so you walk an average of 5 meters in 1 min

4*5=20

8 0
4 years ago
Read 2 more answers
Other questions:
  • Jesus can wash 6 cars in 40 minutes. At this rate, how many cars can Jesus<br> wash in 4 hours?
    8·1 answer
  • By using double inequality describe all the numbers that are:
    11·1 answer
  • Find all zeros of ƒ(x) = x^3 + 2x^2 – x – 2. Then determine the multiplicity at each zero. State whether the graph will touch or
    12·1 answer
  • A food packet is dropped from a helicopter and is modeled by the function f(x) = −15x2 + 6000. The graph below shows the height
    6·2 answers
  • The common difference of an ap is -2 find its sum of first term is hundred and last term is -10 with full solution
    7·1 answer
  • X over 2.5 = 5 equations and inequalities
    9·1 answer
  • Use the shell method to write and evaluate the definite integral that represents the volume of the solid generated by revolving
    9·1 answer
  • The diagram below is a kite. Find the slope of each side of the kite then use that information to explain why the kite is NOT a
    12·1 answer
  • You'd like to see how many baseball and soccer games you can attend this spring. Travel
    5·1 answer
  • What kind of statement does the shorthand below represent?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!