In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
f(x) = √3x
g(x) = √48x
(f . g)(x) = ?
Step 02:
(f . g)(x) :
![\text{ (f.g)(x) = }\sqrt[]{3(\sqrt[]{48x)}}](https://tex.z-dn.net/?f=%5Ctext%7B%20%20%20%20%20%20%20%20%20%20%28f.g%29%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B3%28%5Csqrt%5B%5D%7B48x%29%7D%7D)
![(f.g)(x)\text{ = }\sqrt[]{3(48x)^{\frac{1}{2}}}\text{ }](https://tex.z-dn.net/?f=%28f.g%29%28x%29%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B3%2848x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Ctext%7B%20%7D)
(f.g)(x) = 12 √ x
The answer is:
(f.g)(x) = 12 √ x
Example 1
Write y = x2 + 4x + 1 using function notation and evaluate the function at x = 3.
Solution
Given, y = x2 + 4x + 1
By applying function notation, we get
f(x) = x2 + 4x + 1
Evaluation:
Substitute x with 3
f (3) = 32 + 4 × 3 + 1 = 9 + 12 + 1 = 22
Example 2
Evaluate the function f(x) = 3(2x+1) when x = 4.
Solution
Plug x = 4 in the function f(x).
f (4) = 3[2(4) + 1]
f (4) = 3[8 + 1]
f (4) = 3 x 9
f (4) = 27
Example 3
Write the function y = 2x2 + 4x – 3 in function notation and find f (2a + 3).
Solution
y = 2x2 + 4x – 3 ⟹ f (x) = 2x2 + 4x – 3
Substitute x with (2a + 3).
f (2a + 3) = 2(2a + 3)2 + 4(2a + 3) – 3
= 2(4a2 + 12a + 9) + 8a + 12 – 3
= 8a2 + 24a + 18 + 8a + 12 – 3
= 8a2 + 32a + 27
Answer:![\frac{20+5\sqrt[]{3} }{13}](https://tex.z-dn.net/?f=%5Cfrac%7B20%2B5%5Csqrt%5B%5D%7B3%7D%20%7D%7B13%7D)
Step-by-step explanation:
Answer:
Step-by-step explanation:
Do not confuse the GCF with the Least Common Denominator (LCD) which is the smallest expression that all terms go into, rather than the greatest number
Must it be a scatterplot or no?