Cl-35, as the atomic mass of Chlorine (35.45) is closer to the number 35 than to the number 37. A higher abundance of CL-35 isotope would have caused the atomic number (which is an average of the values of all isotopes of a substances taking relative abundance into consideration) to decrease from 36, which would appear to be the average.
Answer:
The Flow rate = 0.0208 mL/min
Explanation:
Data provided:
Rate of dose = 39 mg every 30 min = (39/30) mg/min = 1.3 mg/min
also,
125mg of methylprednisolone is present in every 2 mL
thus,
concentration = (125/2) mg/mL = 62.5 mg/mL
Now,
The flow rate is given as:
Flow rate = Rate / Concentration
on substituting the respective values, we get
Flow rate = (1.3 mg/min) / (62.5mg/mL)
or
The Flow rate = 0.0208 mL/min
Answer:
The correct answer is - D. the energy stored inside the center of an atom.
Explanation:
Each atom has a small center in it called the nucleus and the energy that holds the nucleus or center of the atom together in the atom is known as nuclear energy.
It is the energy that is stored in the center of the atom and normally does not come out, however, in some radioactive atoms the sends some part of the energy as radiation.
Thus, the correct answer is - D. the energy stored inside the center of an atom.
Answer:

Explanation:
You don't give the reaction, but we can get by just by balancing atoms of Na.
We know we will need the partially balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
M_r: 142.04
2NaOH + … ⟶ Na₂SO₄ + …
n/mol: 0.75
1. Use the molar ratio of Na₂SO₄ to NaOH to calculate the moles of NaF.
Moles of Na₂SO₄ = 0.75 mol NaOH × (1 mol Na₂SO₄/2 mol NaOH
= 0.375 mol Na₂SO₄
2. Use the molar mass of Na₂SO₄ to calculate the mass of Na₂SO₄.
Mass of Na₂SO₄ = 0.375 mol Na₂SO₄ × (142.04 g Na₂SO₄/1 mol Na₂SO₄) = 53 g Na₂SO₄
The reaction produces
of Na₂SO₄.
Answer:- Molarity of the acid solution is 0.045M.
Solution:- The balanced equation for the reaction of given acid and base is:

From the balanced equation, they react in 1:1 mol ratio. So, we could easily solve the problem using the equation:

where,
is the molarity of acid,
is the molarity of base,
is the volume of acid and
is the volume of base.
Let's plug in the given values in the equation:

on rearranging the above equation:

= 0.045M
So, the molarity of the acid solution is 0.045M.