Option D
A precipitate is the term for a solid that forms when two solutions are mixed
<u>Explanation:</u>
A solid set from a couple of solutions is termed a precipitate. A precipitate is an unsolved solid that makes when a pair of solutions are fused and react chemically. Unsolvable means that the solid will not melt. When the effect transpires in a liquid solution, the solid developed is denominated the 'precipitate'.
The substance that generates the solid to make is termed the 'precipitant'. Seldom the development of a precipitate symbolizes the existence of a chemical reaction. Precipitation may additionally transpire immediately from a supersaturated solution.
False They can function as both. An example is Aluminium Oxide. These kind of substances are called "Amphoteric", they can behave as both acids and bases.
Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
ANDESITE is a fine grained rock that formed when magma irrupt it onto the surface and crystallized quickly ANDESITE & DIORITE have a composition that is intermediate between basalt.This is because their parent magmas formed from the PARTIAL melting of a BASALTIC oceanic plate.
Answer:
191.11 grams of oxygen gas should be produced.
Explanation:
The balanced reaction is:
2 Al₂O₃ → 4 Al + 3 O₂
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Al₂O₃: 2 moles
- Al: 4 moles
- O₂: 3 moles
Being the molar mass of each compound:
- Al₂O₃: 102 g/mole
- Al: 27 g/mole
- O₂: 32 g/mole
By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Al₂O₃: 2 moles* 102 g/mole= 204 grams
- Al: 4 moles* 27 g/mole= 108 grams
- O₂: 3 moles* 32 g/mole= 96 grams
Then you can apply the following rule of three: if by stoichiometry 108 grams of aluminum are produced along with 96 grams of oxygen, 215 grams of aluminum are produced along with how much mass of oxygen?

mass of oxygen= 191.11 grams
<u><em>191.11 grams of oxygen gas should be produced.</em></u>