Answer:
12CO2 (g) + 12H2O (l) ⇒ C12H24O12 (s) + 12O2
Explanation:
Start by comparing the moles of carbons on the left to number on the right. The number of moles on both side of the arrow should be the same.
Explanation:
The given reaction is as follows.

Hence, number of moles of NaOH are as follows.
n = 
= 0.005 mol
After the addition of 25 ml of base, the pH of a solution is 3.62. Hence, moles of NaOH is 25 ml base are as follows.
n = 
= 0.0025 mol
According to ICE table,

Initial: 0.005 mol 0.0025 mol 0 0
Change: -0.0025 mol -0.0025 mol +0.0025 mol
Equibm: 0.0025 mol 0 0.0025 mol
Hence, concentrations of HA and NaA are calculated as follows.
[HA] = 
[NaA] = 
![[A^{-}] = [NaA] = \frac{0.0025 mol}{V}](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20%5BNaA%5D%20%3D%20%5Cfrac%7B0.0025%20mol%7D%7BV%7D)
Now, we will calculate the
value as follows.
pH = 
![pK_{a} = pH - log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%3D%20pH%20-%20log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= 
= 3.42
Thus, we can conclude that
of the weak acid is 3.42.
Hello.
The answer is <span>+313.766 J/mol·K
</span>
Use the coefficients of the reaction and sum the product entropies less the reactant entropies:
4*188.8 + 2*213.7 - 3*205.1 - 2* 126.8 = 313.7 J/mol*K
Have a nice day
The formula to calculate osmotic pressure is
Osmotic Pressure = M R T
M = Molarity
R = Ideal Gas Constant
T = Temperature in Kelvin
So,
24.6/.2254kg=109.139g /kg >>>>> Molarity
109.139 x mols/92 g = 1.186 mols kg^-1
1.186 x 0.08134 x 298 K = 28.755 atm
<span>1.06852 x 0.08134 x 298K= 26.5 atm
The answer is 26.5</span>
Ok I may be young but combine the two reactions to create a compund