Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
The formula for density is:
D = m/v
We can use the formula to figure out the mass because we already know two of the three values (we are given the density and volume), so we only have to solve for <em>m. </em>If we plug our given values into the formula, we get:
2.70 = m / 264
Now, all we need to do is solve for <em>m</em>. The goal is to get <em>m</em> on one side of the equation, and all we have to do is multiply each side of the equation by 264:
264 × 2.70 = (m÷264) × 264
264 × 2.70 = m
m = 712.8
The mass of the piece of aluminum is 712.8 grams.
Answer:
To decrease the algae
Explanation:
Acid lakes have more algae than other lakes
<span><span>Atomic number36,</span><span>Atomic mass<span>83.80 g.mol -1,</span></span><span>Density<span>3.73 10-3 g.cm-3 at 20°C,</span></span><span>Melting point- 157 °C,</span><span>Boiling point<span>- 153° C</span></span></span>
<span>pm stands for picometer and picometers are units which can be used to measure really tiny distances. One picometer is equal to 10^{-12} meters. We know that one centimeter is equal to 10^{-2} m so there are 10^2 cm per meter.
We can change the distance d = 115 pm to units of centimeters.
d = (115 pm) x (10^{-12}m / pm) x (10^2 cm / m)
d = 115 x 10^{-10} cm = 1.15 x 10^{-8} cm
The distance in centimeters is 1.15 x 10^{-8} cm</span>