1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
13

Two equivalent ratios or rates

Mathematics
1 answer:
ella [17]3 years ago
8 0
1:2=5:10, hope this helps
You might be interested in
one vertex of a triangle is located at (0,5) on a coordinate grid after a transformation the vertex is located at(5,0) which tra
Alik [6]

Answer:

It's a rotation clockwise of 90 degrees about the origin.

Step-by-step explanation:

The given point moves from   y = 5 to x = 5 so it has passed through 90 degrees about the origin.

It's a rotation clockwise of 90 degrees about the origin.

6 0
3 years ago
ANSWER THIS PLZZZZZZ
Citrus2011 [14]
I would say it’s B because out of ten it makes the mean 1 point higher
6 0
3 years ago
A student records the repair cost for 22 randomly selected dryers. A sample mean of $98.78 and standard deviation of $15.49 are
Gelneren [198K]

Answer:

The critical value that should be used is T = 2.0796.

The 95% confidence interval for the mean repair cost for the dryers is between $91.912 and $105.648.

Step-by-step explanation:

We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 22 - 1 = 21

95% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 21 degrees of freedom(y-axis) and a confidence level of 1 - \frac{1 - 0.95}{2} = 0.975. So we have T = 2.0796, which is the critical value that should be used.

The margin of error is:

M = T\frac{s}{\sqrt{n}} = 2.0796\frac{15.49}{\sqrt{22}} = 6.868

In which s is the standard deviation of the sample and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 98.78 - 6.868 = $91.912

The upper end of the interval is the sample mean added to M. So it is 98.78 + 6.868 = $105.648

The 95% confidence interval for the mean repair cost for the dryers is between $91.912 and $105.648.

8 0
3 years ago
~PLEASE HELP ASAP OFFERING 10 POINTS~
Marina CMI [18]
T = c + cb
t - c = cb
(t - c)/c = b
b = (t - c)/c
6 0
3 years ago
¿Para cuál(es) valor(es) de p las rectas de ecuación x − 1/p = 2 − y/p y x − 1/1 − p = y − 2/2 son perpendiculares? A) Solo para
Akimi4 [234]

Respuesta:

C) Solo para el -1

Explicación paso a paso:

Para resolver este problema, debemos de determinar la pendiente en cada una de las ecuaciones provistas:

\frac{x-2}{p}=\frac{2-y}{p}

y

\frac{x-1}{1-p}=\frac{y-2}{2}

ahora bien, necesitamos conocer el valor de la pendiente de una de las dos ecuaciones. Tomemos la primera ecuación y resolvámosla para y:

\frac{x-2}{p}=\frac{2-y}{p}

Multiplicamos ambos lados para p y obtenemos:

x-1=2-y

volteamos la ecuación y nos da:

2-y=x-1

pasamos el 2 a restar al otro lado y nos da:

-y=x-1-2

-y=x-3

y dividimos ambos lados de la ecuación dentro de -1

y=-x+3

esta ecuación ya tiene la forma pendiente intercepto:

y=mx+b

donde m es nuestra pendiente:

m_{1}=-1

Esta es la pendiente de una de las dos ecuaciones, para que la segunda ecuación sea perpendicular a la primera, su pendiente debe de ser el recíproco negativo de la pendiente de la primera ecuación, entonces la pendiente de la segunda ecuación debe ser:

m_{2}=-\frac{1}{m_{1}}

m_{2}=-\frac{1}{-1}

m_{2}=1

ahora tomamos la segunda ecuación y encontramos su pendiente. Tomemos la ecuación:

\frac{x-1}{1-p}=\frac{y-2}{2}

y despejemos y, comenzamos multiplicando ambos lados de la ecuación por 2, así que obtenemos:

2\frac{x-1}{1-p}=y-2

Multiplicamos el 2 por cada término de la fracción, entonces obtenemos:

\frac{2x-2}{1-p}=y-2

ahora pasamos el 2 a sumar al lado izquierdo y obtenemos:

\frac{2x-2}{1-p}+2=y

Ahora podemos separar la fracción del lado izquierdo en dos fracciones para obtener:

\frac{2x}{1-p}-\frac{2}{1-p}+2=y

volteamos la ecuación y nos da:

y=\frac{2x}{1-p}-\frac{2}{1-p}+2

Ahora nuestra ecuación ya tiene la forma y=mx+b

de aquí podemos determinar nuestra pendiente:

m=\frac{2}{1-p}

Con la primera ecuación determinamos que esta pendiente debería de ser igual a 1, entonces igualamos esa segunda pendiente a 1 para obtener:

\frac{2}{1-p}=1

y despejamos p

Pasamos a multiplicat el 1-p al lado derecho de la ecuación para obtener:

2=1-p

volteamos la ecuación:

1-p=2

pasamos el 1 a restar al lado derecho:

-p=2-1

-p=1

y multiplicamos ambos lados de la ecuación por -1 para obtener:

p=-1

Entonces la respuesta es C) solo para el -1

4 0
3 years ago
Other questions:
  • PLEASE HELP!! <br><br>Complete the equation.<br><br> (13)^2 (13)^-14 (13)^5 = 13 [ ]a0
    9·2 answers
  • Factor the polynomial
    10·1 answer
  • What is 18/2 expressed as a whole or mixed number
    12·1 answer
  • (a) An angle measures 27°. What is the measure of its complement?
    9·1 answer
  • GRADUATING THIS WEEK NEED THIS ALL ANSWERED
    6·2 answers
  • How do i solve the following question 2x + 3 = 9
    10·1 answer
  • The perimeter of the scalene triangle is 54.6cm, which equation can be usted to find the value of b if side a measures 8.7 cm?
    8·1 answer
  • Ms. Garza is an architect who is helping with the set design for a school play. She was asked to cover the figure on the left wi
    10·2 answers
  • Please help will give brainliest to right answer
    6·1 answer
  • A. Consider the cube shown below. Identify the two-dimensional shape of the cross-section if the cube is sliced horizontally.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!