Answer:
C. 590 mph

Explanation:
Given:
- velocity of jet,

- direction of velocity of jet, east relative to the ground
- velocity of Cessna,

- direction of velocity of Cessna, 60° north of west
Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.
Refer the attached schematic.
So,

&


Now the vector of relative velocity of Cessna with respect to jet:



Now the magnitude of this velocity:

is the relative velocity of Cessna with respect to the jet.
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
The other nation will get mad at the other nation and they could start a war
................................................................
Answer:

Explanation:
From the question we are told that:
Height 
Time 
Generally the Newton's equation for Initial velocity upward is mathematically given by



Generally the velocity at elevation and depression occurs as ball arrives and passes through S=28


Generally the Newton's equation for time to reach initial velocity is mathematically given by




Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is
