Answer:
If an object has a fast velocity, the dots on a ticker tape diagram will be far apart.
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is 
The initial speed of the rubber ball is 
The final speed at which it bounces bank 
The mass of the clay ball is 
The initial speed of the clay ball is 
The final speed of the clay ball is 
Generally Impulse is mathematically represented as
where
is the change in the linear momentum so

For the rubber is


=> 
For the clay ball


=> 
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball
Answer: D(t)= 50(4/5)^t
Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).
If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.
Velocity is defined as Distance divided by Time.
In other words, V = D/T.
Now that we have our formula, we can solve.
Let's plug in the numbers we have.
We have 12m [East (direction not necessary when solving yet)] for our distance, and 0.15s as our time.
Divide the distance (12 /) by the time (0.15)
12 / 0.15 = 80.
Your velocity is 80 m/s [E]
I hope this helps!
<span>The image produced is real and enlarged.
Check for various positions of objects and Images for convex lens.
Note at position of 2F, the image is same as the object, and once it is between 2F and F, the image becomes bigger than the object. </span>