1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
5

For each of the following pairs of gas properties, describe the relationship between the properties, describe a simple system th

at could be used to demonstrate the relationship, and explain the reason for the relationship: (a) volume and pressure when number of gas particles and temperature are constant, (b) pressure and temperature when volume and the number of gas particles are constant, (c) volume and temperature when pressure and the number of gas particles are constant, (d) the number of gas particles and pressure when volume and temperature are constant, and (e) the number of gas particles and volume when pressure and temperature are constant.
Physics
1 answer:
asambeis [7]3 years ago
7 0

Answer:

For  each pair of properties of a gas, the relationships are (see the explanation for the description of the systems):

  1. (a) Volume and pressure: The relationship between them is inversely proportional.
  2. (b) Pressure and temperature: They have a directly proportional relationship.
  3. (c) Volume and temperature: They relationship is directly proportional.
  4. (d) Number of gas particles and pressure: The relationship is directly proportional between them.

Explanation:

1. Volume and pressure (temperature and amount of particles constant):

They have an inversely proportional relationship, because <em>if volume is reduced, the pressure increases, or if the volume increases, the pressure decreases</em>.

A simple system could be one similar to the one used by Boyle to test this relationship:

  • Seal the short extreme of a translucent J tube. It could be glass or plastic.
  • Put some water on it. As much as needed to have both sides of the tube filled.
  • Using a syringe, and a flexible small tube,inject a determined volume of air in the bottom in a way that the bubble is trapped in the seal side of the J tube.
  • Then if more water is added to the tube, it will increase the pressure (from the pressure definition is possible to in the trapped air, and is possible to measure the compression of the air bubble. The same is possible if using the syringe, and the flexible tube, some water is removed, and the increasing of volume could be observed.

2. Pressure and temperature (volume and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure would increase, also</em>.

A simple system to show this is two cans of soda.

  • The can is rigid, so the volume is always constant, and the amount of gas inside the soda is the same.
  • Put one can under the sun, and the other in the cooler.
  • After a while, take it out the can in the cooler, and open both cans.
  • The one that was under the sun will "explode", in other words, it will liberate a lot of foam of gas and soda, meaning that the pressure inside the can was high.
  • The one that was in te cooler, won't liberate any foam, meaning that the pressure was low.

3. Volume and temperature (pressure and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure will increase, also</em>.

A simple system to show this is a party balloon.

  • Fill the party balloon with some air, not enough to be close to explode, but enough to have it of a medium size. Tie the filling hole of the balloon.
  • The air inside the balloon would be at the same pressure than the atmosphere around it, so always will be at this pressure, and the close hole ensure that it has always the same amount of air inside.
  • Now is possible to use some heat source, for example as a hair dryer to increase the temperature of the balloon and its contents. The size of the balloon will increase. Then using water is possible to cool it down and watch how its size decreases.

4. Number of gas particles and pressure (volume and temperature of gas remains constant)

They have a directly proportional relationship, because <em>if the amount of gas particles is reduced, the pressure decreases, or if quantity of gas particles increases, the pressure will increase, also</em>.

A simple system to show this would be a bicycle tire:

  • The tire is rigid, so its volume is essentially constant, and the temperature would remains the same if not moving or driving it.
  • Using a tire gauge, it is possible to know the manometric pressure inside the tire, that is the difference between the actual pressure inside the tire and the atmospheric pressure.
  • Then each time that using an air pump some air is injected in the tire, it si possible to check the pressure inside it using the gauge, and observe how is increasing.
  • Also, is possible to open the valve, to allow some air to escape, then use the gauge to observe how the pressure decreases.

You might be interested in
Which is an example of sliding friction? (1 point)
irinina [24]

Answer:

your answer is c

Explanation:

"a child applying the brakes on his bike"

5 0
3 years ago
Read 2 more answers
(33%) Problem 3: Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1100 kg and i
expeople1 [14]

Answer:

The final velocity of the cars is 8.38 m/s at an angle 39.1° south of west.

Explanation:

Given that,

Mass of first car = 1100 kg

Velocity of first car = 8.5 m/s

Mass of second car = 650 kg

Velocity of second car = 17.5 m/s

Suppose we need to find the final velocity of the cars and direction of the cars.

We need to calculate the velocity of the car in west direction

Using conservation of momentum in west direction

m_{f}v_{f}+m_{s}v_{s}= (m_{f}+m_{s})v_{x}

v_{x}=\dfrac{m_{f}v_{f}+m_{s}v_{s}}{(m_{f}+m_{s})}

Put the value into the formula

v_{x}=\dfrac{1100\times0+650\times17.5}{1100+650}

v_{x}=6.5\ m/s

We need to calculate the velocity of the car in south direction

Using conservation of momentum in south direction

m_{f}v_{f}+m_{s}v_{s}= (m_{f}+m_{s})v_{y}

v_{y}=\dfrac{m_{f}v_{f}+m_{s}v_{s}}{(m_{f}+m_{s})}

Put the value into the formula

v_{y}=\dfrac{1100\times8.5+650\times0}{1100+650}

v_{y}=5.3\ m/s

We need to calculate the final velocity of the cars

Using formula of velocity

v_{eq}=\sqrt{(6.5)^2+(5.3)^2}

v_{eq}=8.38\ m/s

We need to calculate the direction

Using formula of direction

\tan\theta=\dfrac{v_{y}}{v_{x}}

Put the value into the formula

\tan\theta=\dfrac{5.3}{6.5}

\theta=\tan^{-1}(\dfrac{5.3}{6.5})

\theta=39.1^{\circ}

Hence, The final velocity of the cars is 8.38 m/s at an angle 39.1° south of west.

8 0
3 years ago
An astronaut orbits planet Y in her spaceship. To remain in orbit at 410km above the planet's center, she maintains a speed of 6
choli [55]
Formula for orbital speed, v =  √(GM/R)

Where G is the universal gravitational constant, M = Central Mass,

R = Distance between centers of Mass.

Given.  v = 68 m/s, M = ? , R = 410 km = 410000 m., G = 6.674 * 10⁻¹¹ Nm²/kg²

68 = √(GM/R)

68 = √(6.674 * 10⁻¹¹ * M/410000)

68² =  (6.674 * 10⁻¹¹ * M)/410000

(68²  * 410000) / 6.674 * 10⁻¹¹    = M

2.84 × 10¹⁹    = M

Mass of Planet Y =  2.84 × 10¹⁹ kg
3 0
2 years ago
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 9.
Ksju [112]

To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

v =  \sqrt{\frac{2GM}{R}}

Where,

G = Gravitational Universal Constant

M = Mass of Planet

r = Radius of the planet ('h' would be the orbit from the surface)

The escape velocity is

v = 14.9km/h = 14900m/s

Through this equation we can find the mass of the Planet in function of the distance, therefore

M = \frac{v^2R}{2G}

M = \frac{14900^2R}{2(6.67*10^{-11})}

M = 16.64*10^{17}R

The orbital velocity is

v_o = \sqrt{\frac{GM}{R+h}}

9200^2 = \frac{(6.67*10^{-11})(16.64*10^{17})R}{R+1500*10^3}

11.1*10^7R = (R+15000*10^3)(9200)^2

2.64*10^7R = 12.69*10^{13}

R = 4.81*10^6m

The time period of revolution is,

T = \frac{2\pi(R+h)}{v_o}

T = \frac{2\pi(4.81*10^6+1.5*10^6)}{9200}

T = 4307s

T = 72min = 1hour12min

Therefore the orbital period of the satellite is closes to 1 hour and 12 min

3 0
3 years ago
Ultraviolet radiation is dangerous because it has a high enough energy to damage skin cells. UV radiation is called ultraviolet
BabaBlast [244]

Answer: smaller

Ultraviolet radiation has broad range of wavelengths, higher number means greater risk of exposure to UV rays that can be dangerous to skin cells. Sunlight is the main source of electromagnetic radiation and it is transmitted in different wavelengths known as electromagnetic spectrum. This spectrum is divided into several regions in order of decreasing wavelength and increasing energy and frequency. UV radiation has frequency and energy that is higher than purple light or violet radiation and the wavelength of ultraviolet radiation is smaller than violet radiation. 

<span> </span>

8 0
3 years ago
Read 2 more answers
Other questions:
  • A skydiver is in free fall. What is the only force acting upon the skydiver.
    12·1 answer
  • A baby stroller is a rest on top of a hill which is 10 m high. The stroller and baby have a mass of 20 kg. What is the potential
    11·2 answers
  • An error in witch macromolecule is the cause of hemophilia
    14·2 answers
  • An evacuated tube uses an accelerating voltage of 40 kv to accelerate electrons to hit a copper plate and produce x rays. non-re
    5·2 answers
  • Consider a 10 gram sample of a liquid with specific heat 2 J/gK. By the addition of 400 J, the liquid increases its temperature
    6·1 answer
  • Two asteroids collide and stick together. The first asteroid has mass of 1.50 × 104 kg andis initially moving at 0.77 × 103 m/s.
    5·1 answer
  • A kettle heats 1.75 kg of water. The specific latent heat of vaporisation of water is 3.34 x 106 J/kg. How much energy would be
    7·1 answer
  • I will give brainliest to whoever answers this in less than 10 minutes.
    7·1 answer
  • Angles t and v are complementary.angles T has a mesure of (2X+10). Angle v has a measure of 48 what is the value of x
    5·1 answer
  • How long does it take a car traveling at 50 mph to travel 75 miles? Use one of the following to find the answer.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!