Answer:
The correct answer is -0.129 kJ
Explanation:
In the given case, the cooling of the balloon is done by withdrawing 0.784 J of heat, and the work done by the atmosphere on the balloon is 655 J. First, there is a need to transform kJ into J, 1 kJ = 1000 J. So, 0.784 kJ would be 784 J.
The ΔE or the change in the internal energy can be calculated by using the formula, ΔE = q + w ----- (1).
In the given case, q refers to the heat moved out of the system, that is, the value of q would be less than 0 or will be a negative quantity. Therefore, the heat moved out of the system will be -784 J. On the other hand, as the work or w is done on the system, therefore, the value of w would be more than 0 or will be a positive quantity. Thus, the value of w will be +655 J.
Now putting the values in the equation (1) we get,
ΔE = -784 J + 655 J
ΔE = -129 J or -0.129 kJ
As the change in internal energy comes out to be a negative value, therefore, the process is considered exothermic.
Is a potential to provide effective treatment with fewer side effects than a traditional therapy.
Answer:
Groundwater, Glaciers, and Polar Ice.
Explanation:
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
Answer:
The molarity of the HCl solution is 4M.
Explanation:

Hence, the molarity of the HCl solution = 4 M